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Abstract— In recent years, there has been a growing interest
in multiple robots performing a single task through different
types of collaboration. There are two software challenges when
deploying collaborative robots: how to specify a cooperative
mission and how to program each robot to accomplish its
mission. In this paper, we propose a novel software development
framework to support distributed robot systems, swarm robots,
and their hybrid. We extend the service-oriented and model-
based (SeMo) framework [1] to improve the robustness, scala-
bility, and flexibility of robot collaboration. To enable a casual
user to specify various types of cooperative missions easily,
the high-level mission scripting language is extended with new
features such as team hierarchy, group service, one-to-many
communication. The script program is refined to the robot codes
through two intermediate steps, strategy description and task
graph generation, in the proposed framework. The viability
of the proposed framework is evidenced by two preliminary
experiments using real robots and a robot simulator.

I. INTRODUCTION

In recent years, there has been a growing interest in
multiple robots performing a single mission collaboratively
in various types. On the one hand, in a distributed robot
system, robots are usually assigned different tasks to accom-
plish a common goal collaboratively. On the other hand,
in swarm robotics, robot behavior is defined collectively
without specification of the role of individual robots. A
mixture of those two different collaboration styles is also
possible. In the deployment of cooperating robots, there are
two software challenges: how to specify the cooperative
mission and how to program each robot to accomplish the
mission. For general robot programming, we need to take
into account a wide range of robot platforms, from insect-
sized small mobile robots [2]–[4] to humanoid robots.

A traditional method to program a robot is to use the robot-
specific programming environment provided by the robot
manufacturer [5], [6]. This method is not adequate for the
behavior specification of cooperating robots that may be het-
erogeneous. To increase the reusability of software, several
robotic software platforms have recently been developed. The
most widely used is robot operating system (ROS) [7], which
provides a set of APIs (application programming interfaces)
abstracting the hardware platform, and libraries and tools to
enable robot programming agnostic of the hardware platform.
While ROS is useful for programming of an individual
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robot, there is no API to specify a cooperative mission of
multiple robots [8], [9]. Also, ROS programming is not
easy for a casual user that has little knowledge of computer
programming [10].

Two approaches have been proposed for software develop-
ment of multiple robots: 1) bottom-up approach and 2) top-
down approach. The bottom-up approach is to program the
behavior of individual robots and their interaction with a pre-
defined set of APIs for communication and synchronization
between robots. This approach is widely used by extending
the existent robot programming environment for distributed
robot systems. Since it gives the developer complete control
over the design, the developer is exposed to the overwhelm-
ing burden of design details such as synchronization and
robust programming [11]–[13]. The top-down approach, on
the other hand, is to abstract multiple robots into groups and
specify their behaviors as a single robotic motion. Since it
lacks expressive power to fine-tune specific robot behaviors,
it is difficult to specify a cooperative mission in which
heterogeneous robots behave differently [13]. Thus, it is
applicable for swarm robotics.

To support both distributed robot systems and swarm
robotics, we propose a novel software development frame-
work that integrates the top-down and the bottom-up ap-
proaches synergistically. The proposed framework is based
on the service-oriented and model-based (SeMo) framework
[1] that supports distributed robot systems only. The unique
characteristic of the SeMo framework is to separate high-
level mission specification and low-level robot programming.
In SeMo, a cooperative mission is specified as a sequence of
services that the robots perform at a high level by a scripting
language: grouping robots into teams and specifying the
behavior of each team, assuming that all robots in a team
perform the same specified service. The robots that perform
different tasks should be assigned to different teams. While
it supports communication between teams, it does not allow
robots in a team to communicate with each other. Moreover,
it has no consideration of robot failure, which is a common
assumption in swarm robotics. Since the behavior of the
robots is statically determined, if one robot fails to perform
its role, the entire mission is affected.

In this paper, we extend the SeMo framework significantly
to improve the robustness, scalability, and flexibility of robot
collaboration, by adding some key features of swarm robotics
in the scripting language. Unlike the fixed team formation
in the SeMo framework, we add a team hierarchy, which
allows the developer to form a group of robots dynamically
in a team. A team of robots may have several groups that
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perform different services at the same time. Also, a new
notion of a service, called group service, is introduced,
which corresponds to the cooperative mission specification in
the top-down approach. Moreover, intra-team communication
via broadcasting and local information sharing, which are
essential for swarm robotics, are supported in the extended
framework. Thus, the proposed framework enables a casual
user to specify various types of cooperative missions for
distributed robot systems, swarm robots, and their hybrid.

The high-level mission specification is translated into
extended dataflow graphs with the strategy description file
in the SeMo framework. The file describes how to translate
a high-level service into a set of tasks that each robot can
perform. For each robot, it is assumed that all tasks are pro-
grammed and prepared in the task library, which corresponds
to the bottom-up approach. The individual robot program is
automatically generated from the extended dataflow graph.
It relieves the programmer of the aforementioned burden
of the bottom-up approach and reduces the risk of manual
programming error drastically.

The viability of the proposed methodology is validated
with two experiments; one with a distributed robot system
and the other with a robot simulator. The former demon-
strates the added features for distributed robot programming
and the other for swarm robotics. We compare the number
of lines of generated code to verify the productivity of the
software.

We summarize the key contributions of this paper as
follows.

• We propose a novel software development methodol-
ogy for cooperating robots combining the top-down
and bottom-up approaches synergistically. High-level
mission specification enables a novice programmer to
perform a mission scenario with multiple robots. And
the extended dataflow model is used for robot behavior
programming.

• A novel scripting language is extended to support swarm
robotics as well as distributed robot systems with added
features for dynamic group formulation, the definition
of group services, local information sharing, and so on.
It improves the scalability, flexibility, and robustness of
multiple robots.

• From the extended syntax of the scripting language,
we generate the extended dataflow graph to realize the
specified mission and individual robot programs are
automatically synthesized from the task graph specifi-
cation.

• To support sharing information among multiple robots,
we extend the dataflow model by adding another type
of port for multicasting. We use multicasting to share
information in the distributed fashion.

II. BACKGROUND

In this section, we review the SeMo framework briefly
with a distributed robotics example.

Mission SpecificationStep 1

Code Generation

Task Graph SpecificationStep 3

Step 4

Strategy DescriptionStep 2

… 

… 
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Fig. 1. Overview of the SeMo framework

A. An Example of Distributed Robotics System

A cooperative mission to scout a specific area is given to a
set of heterogeneous robots. After they all move to a specific
destination, a group of robots works together to find colored
papers within a particular area and the other robots watch
around the area to detect any danger. When any danger is
detected, they signal to the searching robots to hide. When
they are considered safe, they continue searching for papers
again. The robots share the information of the colored papers
they have found with each other, and that information is
periodically reported to the user.

B. Service-oriented and Model-based Framework

SeMo [1] is a software development framework that
separates high-level mission specification and robot behavior
programming. The overall flow of the software development
methodology is shown in Fig.1, which can be understood as
the refinement process among four levels of abstraction in
software development.

The first step is mission speci f ication at the top level
of abstraction with a scripting language. It involves team
composition and service-oriented behavior specification of
each team, allowing dynamic mode change of operation and
multi-tasking. Fig.2 shows a snippet of mission specification
associated with the example mentioned above. Robots are
grouped into teams (line 1 and 2) and the behavior of
each team is defined with a composite service; for instance,
ApproachDestination (lines 3-5) and Search (lines 6-16) are

11616



two composite services for SlaveTeam. The internal behavior
of a composite service is defined by a sequence of services
that the robots will perform. To express multi-tasking, the
notion of plan [14] is introduced. There are two plans,
Listen and Action, defined for SlaveTeam, as can be found on
lines 17-19 in the example of Fig.2. Besides, the robot may
have various operating modes, and mode change is triggered
by events generated in a composite service. In Fig.2, how
to express mode transition can be found on lines 20-25.
Refer to [1] for more detailed information on the mission
specification.

The second step is strategy description, which provides
information on how to transform service into a set of tasks
that each robot can perform. In case there are several methods
to perform a service, we need to select one based on the
provided information. Non-functional requirements such as
execution time and power budget can be described at this
step as well.

The next step is task graph speci f ication that describes
the internal behavior of each robot to accomplish its mission,
based on the extended synchronous dataflow (SDF) model
[15]. The task graph is composed of the tasks and channels
between tasks. Unlike the mission specification, it is assumed
that the task code is written by experts. Recently compute-
intensive services such as vision and machine learning have
become popular in robots. A compute-intensive service can
be specified by a task subgraph that can be mapped to
multiple processors for parallel processing. The extended
SDF model, which defines formal semantics for communi-
cation between tasks and task execution conditions, allows
us to make the task scheduling decision at compile-time
and estimate the performance and resource requirements.
The extended model uses a finite state machine to represent
dynamic behavior and a special type of task, called library
task, to manage shared resources among multiple robots.

The final step is automatic code generation, from the
extended dataflow model to the target code that runs on each
processor. From the same task graph, it generates different
codes for different robot platforms automatically. It could
improve the software design productivity significantly.

III. PROPOSED METHODOLOGY

In this section, we explain how we extend the SeMo
methodology to increase the robustness, scalability, and flex-
ibility of robot collaboration, by adding some key features
of swarm robotics in the scripting language.

A. Service-oriented Mission Specification

The syntax of the scripting language is formally defined
by the Backus-Nauer form (BNF). The suffixes ”*”, ”+”, and
”?” mean ”repeated zero or more times,” ”repeated one or
more times” and ”zero or one time,” respectively. Due to
page limitations, we focus on the extended syntax, omitting
the unchanged syntax as the SeMo framework. In SeMo, the
cooperative mission is described by a set of team services
that may be changed dynamically depending on the mode
of operation. The first extension is made to the composite

1 MasterTeam: iRobotCreate irobot # team formation

2 SlaveTeam: TurtlebotBurger burger[2], Ev3Robot ev3[2] 

3 SlaveTeam.Action.ApproachDestination { 

4 move (Paris palace of congress )   # composite service definition

5 throw find_color_paper } repeat (SlaveTeam.not_arrived)

6 SlaveTeam.Action.Search {            

7 [[ 

8 group (instance of TurtlebotBurger) { 

9 loop(2 SEC)  

10 if (SlaveTeam.lightness < 200 )

11 publish(SlaveTeam, SlaveTeam.Message = suggestHiding)} 

12 others {

13 searchPaper(); 

14 publish(SlaveTeam, SlaveTeam.Message = suggestReturning) }

15 ]]

16 } ….

17 SlaveTeam.AUTODRIVE_MODE{          # multitasking per mode 

18 set( Listen, CommOperator ) 

19 set( Action, ApproachDestination) } ….

20 SlaveTeam.main {                    # dynamic mode change definition

21 case (AUTODRIVE_MODE):

22 catch(find_color_paper): mode = SEARCH_MODE

23 catch(remote_control): mode = RC_MODE

24 case (SEARCH_MODE): …. 

25 default: mode = AUTODRIVE_MODE }

Fig. 2. Mission scripting language example

Leader

Others

Group1

Group2 Others

Team

Fig. 3. Dynamic group allocation

service definition of a team as displayed below from lines
3-10 in the BNF form.
1 <Service> ::= <TeamName>.<PlanName>.<CompServiceName>
2 { <Stmt>+ } <RepeatStmt>?
3 <Stmt> ::= <GeneralStmt> | <GroupStmt>
4 <GroupStmt> ::= [[ <LeaderDef> <OtherStmt>? ]]
5 | [[ <GroupDef>+ <OtherStmt>? ]]
6 <LeaderDef> :: = leader(<GroupCondition>) {<GeneralStmt>+}
7 <GroupDef> ::= group(<GroupCondition>) {<GeneralStmt>+}
8 <OtherStmt> ::= others {<GeneralStmt>+}
9 <GroupCondition> ::= instance of <RobotType>+
10 | capable of <RobotCapability>+

We introduce the team hierarchy in which the robots in
a team can be grouped dynamically. While team formation
is statically defined at the beginning of the mission script,
groups are defined inside the composite service to support
dynamic grouping. We support two types of group structure,
leader-follower structure [12] and peer-peer structure [16],
[17] as defined in line 4 and 5 in the above BNF description.
As illustrated in Fig.3, the leader-follower structure is a
vertical structure in which one robot is designated as the
leader to control the other robots. The peer-peer structure, on
the other hand, has a horizontal relationship between robots.

We can group robots based on the type or the capability
of the robot (line 9 and 10 in the BNF description). For
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example, robots with a camera sensor can perform a video
shooting service. In the composite service of a team, we
may divide the robots into multiple groups that are assigned
different services. A pair of symbols, [[ and ]], are used to
specify concurrent execution of services by multiple groups
of the robots. Note that a robot can belong to one group at
most; if it satisfies more than one grouping condition in a
composite service, it has to choose one group arbitrarily. In
the example of Fig.2, SlaveTeam is divided into two groups in
the Search service, as shown in lines 7-15. One group that is
of type TurtlebotBurger detects a dangerous condition, while
the other group that consists of the remaining robots search
for the color papers.

The second extension is the introduction of group service
that can be performed by two or more robots together
without the specification of the role of individual robots.
It is an example of a top-down specification for swarm
robotics. How to perform a group service is elaborated in
the strategy description in the proposed methodology. The
service SearchPaper described in Fig.2 can be defined as a
group service, for instance. Since we assume that a robot
in a group may fail during operation, the group service is
performed collaboratively by available robots.

As the third extension, one-to-many communication is
added. The SeMo framework supports one-to-one commu-
nication only with two APIs, send and receive. Since multi-
casting can be realized by multiple one-to-one communica-
tions, it can specify the cooperative mission of a distributed
robotics system as long as all robots are live during operation.
Unfortunately, any robot may fail in swarm robotics, so it is
recommended to use broadcasting. To this end, a pair of new
APIs, publish and subscribe, is introduced. In line 11 and 14
of Fig.2, broadcasting communication is used for each group
to send a message.

Last but not least, a new semantics for robot synchro-
nization is defined. Since the performance of robots has a
large variation, the robots in a team may sit in different
execution states. For group services, however, we need to
synchronize the robots. Thus, in the proposed semantics, all
robots involved in a group service are synchronized at the
start of the group service. In the case of the leader-follower
structure of grouping, we may need to select a new leader at
the group formation step if the previous leader fails during
operation. The leader selection scheme is not described in
the mission specification phase but the strategy description
phase.

In summary, the proposed extension offers greater flexibil-
ity and robustness than the previous work, assuming that any
robot may fail during the execution of group services, and
grouping of robots can be made at run-time dynamically.
Fig.2 shows how a group service is used in the service-
oriented mission specification as a hybrid system example
of distributed robotics and swarm robotics.

B. Model-based Task Graph Specification

In the proposed framework, the internal behavior of each
robot is represented by task graphs following an extended

Robot #1 Robot #2

Sensor #1

Sensor #N

… 

Filter #1

Filter #N

Algorithm #1 Actuator #1

Actuator #2

Controller

Receive Send

Algorithm #N

… … 

S1 S2

S3

Robot #N… 

Locally Shared Information

: Sensor / Communication / Computational /Actuator Task         : Unicast Port      

: Control Task         : Library Task                                                : Multicast Port 

channel

Globally Shared Information

Fig. 4. Task graph specification for the internal behavior of a robot,
supporting two types of information sharing

dataflow model of computation. The task graph consists
of tasks and channels, as shown in Fig.4. A task is a
software component that performs the service specified in
the mission script. Following the dataflow semantics, a task
communicates with other tasks through connected channels
via ports. The task graph can naturally specify data de-
pendencies between tasks. The task graphs are generated
from the mission specification automatically, with the help
of the strategy description that will be explained in the next
subsection.

A major difference between a single robot and cooperating
robots lies in information sharing. We distinguish two types
of shared information: global information and local knowl-
edge. Global information is maintained by a special type of
the task, called library task [18] that defines a set of function
interfaces inside. By mapping the library task to a designated
robot, all robots can access the same global information by
sending a query to the robot. Since the robot is a single point
of failure, it is essential to keep the robot live at all times.

On the other hand, robots may want to share information
locally with near robots, without guaranteeing the global
consistency of the knowledge. This local knowledge sharing
is useful for performing a group service. Adopting the
knowledge sharing technique proposed in [19], we dissem-
inate the local knowledge through broadcasting. Since the
broadcasting message includes the creation time of knowl-
edge, the robots can maintain up-to-date knowledge. For
instance, if one robot discovers a yellow paper and receives
a broadcasting message from a neighbor robot that a red
paper is found, the robot broadcasts an up-to-date knowledge
that both red and yellow papers are found. By delivering the
received up-to-date knowledge to neighbors, all robots will
be able to have globally shared knowledge eventually. This
knowledge sharing method is an efficient way of sharing in-
formation between agents without paying a high cost of time
synchronization. When time synchronization is critical for
correct operation, the library task should be used for shared
information management. While the task graph model in the
SeMo framework only supports one-to-one communication
using channel through ports, we add another type of port for
multicasting, as shown in Fig.4.

Multicast is a group communication in which data trans-
mission is addressed to a group of destinations. For instance,
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in Fig.4, task Robot#1 communicates with task Robot#2 and
Robot#N using a multicast port that is associated with an
identifier(id). Since no explicit communication link is needed
for multicast communication, we may vary the size of the
communication group dynamically, allowing us to add or re-
move robots. Note that a multicast port is implemented with
a buffer, and multicast communication does not guarantee the
transfer of information between tasks. Therefore, multicast
is not suitable when data must be delivered for sure.

C. Strategy Description

Since there is a large gap between the high-level mission
script and the task graph specification of each robot behavior,
an intermediate level of abstraction, called strategy descrip-
tion, is added in the SeMo framework. In this step, how to
refine high-level services and values written in the mission
script to the tasks in the task graph model is presented in the
XML markup language. Since such refinement is dependent
on the robot platform, the strategy description should be
written by an expert that is familiar with the robot platform.
For example, when detecting a color value, some robots can
use the color sensor directly, while others need to use the
color filter after capturing an image from the camera.

Since several extensions are made in the mission specifi-
cation, the corresponding extension should be made in the
strategy description. In particular, we need to clarify how to
synchronize robots for the leader selection and execution of
group service. It is also necessary to specify how to share
the information and who has the information. For example,
the service SearchPaper can be refined into a set of fine-
grained services to accomplish the following action: move
on wheels while detecting a new color paper, share the
color information when it detects the new color, and check
whether the goal is satisfied or not. A group service includes
broadcasting information for knowledge sharing. Moreover,
it is necessary to make available robots continue to carry out
the group service even if some robots fail during operation.
Besides, which algorithm to use for selecting leaders of
groups should be expressed in this layer. Due to space
limitations, we omit a detailed explanation and an example
strategy description.

D. Automatic Task Graph Generation

Based on the strategy description file, the task graph
specification can be automatically generated from a given
mission specification. Since we assume that tasks associated
with services and values are defined by robot developers
and registered in the database a priori, we can instantiate
all the required tasks from the mission specification in a
straightforward fashion without any interconnection among
tasks. With the instantiated tasks, we have to add dependency
arcs between tasks by analyzing the dependency between
services in the mission specification. In case the mission
requires knowledge sharing, we identify the requested types
of knowledge sharing and insert the additional tasks for
knowledge sharing and associated communication ports and
channels.
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Fig. 5. Automatic generation of task graph from mission specification and
strategy description

The most challenging is to synthesize the control task that
realizes the dynamic behavior of each robot. In the mission
specification, a robot may change the operation mode, and
grouping is changed dynamically. Such dynamic behavior
is expressed by a hierarchical finite state machine (FSM)
inside a control task, Controller in Fig.4. The mode and plan
information from the mission script is translated into the state
transition diagram in the top-level FSM. In each mode, the
sequence of services is translated into a bottom-level FSM.

The inside of the control task is shown in Fig.5 for
the mission specification of Fig.2. Note that we generate
different FSMs for two robots that belong to the same team
since they belong to different groups in the Search composite
service. Since the group conditions can be inferred from
the candidate robots of the group in advance, the robots
only contain a set of services that need to be performed.
For example, a sensing task that checks brightness should
be included only inside the TurtlebotBurger robot task, and
only the parts that are necessary to search for color papers
are created for Ev3Robot. If a leader exists in the team,
the leader candidate robotic task should include a leader
selection algorithm and periodically check the leader. Fig.5
shows that there are additional states that check the leader
and separate what the leader or the rest need to do in the
resolve plan.

From the generated task code, we synthesize the target
code for each robot automatically, which corresponds to
individual robot programming. Since it is done automatically,
robot programming effort is minimized, while the detailed
modeling of robot behavior is still possible in the proposed
methodology.

IV. EXPERIMENTS

To examine the viability of the proposed methodology,
preliminary experiments are conducted with two cooperative
mission scenarios; one is the example explained in section II-
A with real robots, and the other is a simple swarm robotics
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(a) (b)

Fig. 6. (a) Heterogeneous robots work together to find colored paper, (b)
Quadruped robots share information to avoid falling

TABLE I
LINES OF THE GENERATED CODE

Robot iRobotCreate TurtleBot3 Burgers Ev3RobotRaspberry Pi OpenCR

Mission 211

Strategy 203 654

Task code 278 213 128 240
Control task 207 475 - 455
Comm. task 155 270 - 196

Data Structure 1,168 2,141 375 1,163
Scheduler, etc 19,198 20,235 5,848 19,795

Robot code 20,916 23,334 6,351 21,849

example demonstrated with the V-Rep robot simulator [20].
Our experiments are demonstrated in the video1 from mis-
sion specification to task code generation and actual robot
execution. Some snapshots are shown in Fig. 6.

A. Scouting Mission with Heterogeneous Robots

For the scouting mission of section II-A, three different
types of robots are used: one iRobotCreate [21], two Turtle-
Bot3 Burgers [22], and two Ev3Robots [23]. The iRobotCre-
ate is controlled by a Raspberry pi board with Ubuntu.
TurtleBot3 Burger is equipped with a laser distance sensor, a
light sensor, a LED, two wheels, and a Raspberry Pi 3 Model
B+ (ARM Cortex-A53, quad-core, 1.4GHz) as a single-board
computer and OpenCR 1.0 board [24](ARM Cortex-m7,
216MHz) as a micro-controller. Ev3Robot has a color sensor,
a distance sensor, two motors, and a brick(ARM926EJ-S,
300MHz). All robots communicate with each other using
Wi-Fi.

To verify the robustness of the group service, we test
a scenario where the leader robot in the SlaveTeam fails
during the operation. Since the leader robot is in charge
of communication with the MasterTeam, its failure will
fail the mission. However, the proposed framework selects
a new leader after detecting the failure of the leader by
periodic monitoring and completes the mission correctly.
This experiment also confirms that we generate the target
codes of different robots automatically from the translated
task graph. Table I shows the number of lines in the generated
code. The scenario represented by only 211 lines in the
mission script language is converted into control task code,
communication task code, and task code associated with the

1We uploaded the video in YouTube: https://youtu.be/yugHlo wr-0

hardware component of the robot. For TurtleBot3 Burger,
two wheels, LED, and brightness sensor are connected to
the OpenCR board, so there are no additional control task
and communication tasks. Only serial communication code
is added to transfer the value of each task to the control task
in the Raspberry Pi board. The generated actual robot code
contains data structures for tasks, channels, and libraries, and
target specific code for initialization and wrapup actions. In
addition, target-independent APIs, used in the task graph, are
redefined as target-specific APIs.

B. Swarm Robotics Example

In this example, a number of 4-leg biomimetic robots
that are equipped with a proximity sensor and a camera are
marching in line, which is defined as a group service in
the mission specification. When a robot detects an obstacle,
it shares this knowledge with neighboring robots to stop
marching and turn back. Without knowledge sharing, the
other robots would crash the obstacle. The proposed frame-
work, however, generates the code with knowledge sharing
correctly to avoid crashing.

Furthermore, we change the number of robots from three
to ten to test the scalability in swarm robotics. Since the
detailed robot movement takes long in the V-Rep robot simu-
lator, we used a small number of robots in this experiment. In
the proposed framework, what a user has to do is to modify
the number of robots in the mission scripting language.
Then the codes for all robots are automatically generated
regardless of the number of robots involved.

V. RELATED WORK

The robot software development frameworks of multiple
robots have recently been researched.

While ROS is focusing on individual robots, several
studies use two or more robots for a cooperative mission
[25]. Even though ROS supports various languages such as
Python, Java, and C++, there are no specific APIs defined
for a cooperative mission. Hence it is difficult to specify a
collaborative mission for robots [8]. Since ROS is based on
a central node called rosmaster that provides naming and
registration services for the rest of the nodes to discover
one another, it is known that a robot may get disconnected
in multi-robot systems due to unreliable network [9]. Thus,
using one master inside each reliable network, which is
typically one master per robot, is taken as a solution [26].

Karma [27] is a framework for programming and man-
aging swarms of micro-aerial vehicles (MAVs) based on
a centralized hive-drone model. A drone is an individual
MAV that performs the specified commands without in-field
communication. And the hive, as the central coordinator,
orchestrates the drone and executes a given mission. The user
specifies the cooperative mission by considering many drones
as a swarm rather than individuals. The centralized hive maps
the drones by location, and each drone works in that area and
returns to the hive to share information, which leads to long
information latency. Although this method has the advantage
of easy decision making thanks to the centralized hive and
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simplified programming of the MAV, it is not applicable
for general distributed robot systems. Dolphin [28] is a
programming language for autonomous vehicle networks. It
assumes a centralized program like Karma, allowing a human
to orchestrate an entire network of vehicles based on a global
specification. Since the high-level abstraction helps the user
to write a program without in-depth technical knowledge,
Dolphin is included in Groovy as a domain-specific language.
This work is similar to the proposed methodology in that it
is easy for users to use with scripting languages, but it does
not support swarm robotics.

Proto [29] is a functional programming language for ho-
mogeneous robots. It suggests a primitives library for group
behaviors such as flock, scatter, disperse, and cluster-by [30].
It also provides five constructs, including behavior assign-
ment to groups and activation of the group action [30]. The
program specifies a swarm-like behavior and neighborhood-
based computation. Several studies extend Proto. While Proto
is cumbersome because it is a functional language and has
LISP-like syntax, Protelis [31] is a more recent Proto-based
language built into Java. And Protoswarm [32] extends to
program the swarm of robots. They focus on the swarm
robotics mission that is performed by homogeneous robots,
which is different from the proposed methodology.

The language called Buzz [13] supports heterogeneous
robots. Similar to our research, Buzz has taken both a top-
down approach and a bottom-up approach. Buzz includes
several constructs designed explicitly for top-down swarm-
level development, such as primitives for group formation
and management, local communication, and global consen-
sus. Buzz is also designed to work with small systems.
Since Buzz allows seamless mixing of bottom-up and top-
down constructs in one language, it is difficult for novice
programmers to use.

We summarize the comparison between the proposed
methodology with some selected related work frameworks
in Table II in terms of the following characteristics: 1)
development approach, 2) the orchestration type, 3) the
supporting type of cooperation, and 4) support of dynamic
task allocation. The development approach can be a top-
down approach, a bottom-up approach, or a mixture of
these two. While most studies are using either the top-down
approach or the bottom-up approach, Buzz and our proposed
work, SeMo, take the mixture approach. The orchestration
indicates whether multiple robots are centrally managed or
not. Many studies, even the latest research [28], manage
robots centrally, assuming that human intervention and con-
trol are necessary. ROS is classified as centralized in terms
of multiple robots because communication between nodes
(robots) is made through the name server called rosmaster.
Since swarm robots usually involve a large number of name-
less robots, decentralized orchestration is usually assumed.
In contrast, SeMo considers both orchestration types. In the
case of cooperation type, most of the researches consider
only swarm robots or distributed robots, but not both. SeMo,
however, supports both types of cooperation, which is a
unique characteristic to the best of our knowledge. Lastly, the

TABLE II
FRAMEWORK FOR PROGRAMMING MULTIPLE ROBOTS

Framework Approach Orchestration Cooperation
type

Dynamic
allocation

ROS Bottom-up Centralized Individual/
Distributed No

Karma Top-down Centralized Swarm Yes

Dolphin Top-down Centralized Distributed No

Proto Top-down Decentralized Swarm Yes

Buzz Mixture Decentralized Swarm Yes

Ours Mixture Centralized &
Decentralized Both Yes

TABLE III
COMPARISON WITH OTHER LANGUAGES

- Python Protoswarm Dolphin Buzz Ours

Number of
Keywords 31 28 61 64 38

Example 1 - 11 22 43 16

Example 2 - 19 24 43 11

Example 3 - 20 22 47 21

Example 4
(Service) - - - 30 3

dynamic task allocation represents whether robots can assign
groups dynamically or not, depending on their environments
or situations. Dynamic task allocation is necessary for robust
operation of a cooperating mission.

In Table III, we compare our mission script with other
languages to compare the coding complexity quantitatively.
The number of keywords is shown at the top of the table.
Since Buzz and Dolphin are extensions of existing languages,
they have a relatively large number of keywords. On the other
hand, new language Protoswarm and our mission script have
fewer keywords than them. We also compare the number of
lines when representing the same example in each language.
Example 1, 2, and 3 are simple scenarios taken from [30]. In
Example 1, there are two teams, a red team and a blue team.
The red team proceeds to the blue team, and then the blue
team runs away when they find the incoming red team. The
second example is about deployment, and the third example
is more complicated than other scenarios. One team patrols
to find another team. When they detect, they are scattered.
Since Buzz is based on the bottom-up approach, the line
of code is the longest. Example 4 is expressing a specific
service in the Buzz example. Since our approach may use
abstracted services, the number of lines can be significantly
reduced. In summary, the proposed methodology is no harder
to develop robot software than the related work.

VI. CONCLUSIONS

In this paper, we propose a novel software development
framework to support distributed robot systems, swarm
robots, and their hybrid. The proposed framework is based on
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the SeMo framework that supports distributed robot systems
only. It separates the high-level mission specification and
low-level robot programming. To improve the robustness,
scalability, and flexibility of robot collaboration, we extend
the high-level mission specification by adding new features
such as team hierarchy, group service, and one-to-many
communication. The mission specification is refined into ex-
tended dataflow graphs, one for each robot, with the help of
a strategy description file. Two types of information sharing,
global information shared and local knowledge sharing, are
supported for robot collaboration in the dataflow graph. The
actual robot code per robot is automatically generated from
the associated task graph, which minimizes the human efforts
in low-level robot programming. The viability of the pro-
posed methodology is verified with preliminary experiments
with two cooperative mission scenarios.
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