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Abstract— In haptic time delayed teleoperation as the time
delay from the communication channel increases, teleopera-
tion system stability and performance degrade. To increase
performance and provide better stability margins, various
estimation methods and observers have been implemented in
literature to more accurately capture the force exerted by the
remote system. Previously, solutions focused on environment
force estimation methods that primarily rely on linearization
of the Hunt-Crossley (HC) contact model, which has limiting
assumptions for use. This work addresses the shortcomings
of the aforementioned methods by investigating alternative
HC parameter estimation techniques. A new application of
Chebyshev polynomial approximation for adaptive parameter
estimation of the HC model is proposed. This approximation is
compared to current linearization methods as well as nonlinear
estimation methods that are not well covered in literature.
Moreover, the Chebyshev approximation is used in a new
estimation approach that provides control via backstepping
with adaptive parameter estimation using Lyapunov methods.
This method reduces excitation requirements by using nonlinear
swapping and the data accumulation concept to guarantee
parameter convergence. A simulated full teleoperation system
with time delay demonstrates the effectiveness of this approach.

I. INTRODUCTION

For adequate performance and stability in a teleoperation
system, the master (local) side needs sufficient knowledge
of the remote environment, particularly for model based
controllers. To achieve this, estimation methods can be
implemented to obtain the remote side dynamics or update
the local side model. Many have implemented observers in
the control scheme to accomplish this such as in [1], [2], with
variations using adaptive methods [3], or implementation that
focuses on remote side impedance matching [4].

Alternatively, it may be more desirable to estimate the en-
vironment contact force based on its material properties. The
most common and effective way of achieving this is through
the use of a contact model, such as the Hunt-Crossley (HC)
[5] model. For contact models to be effective, the parameters
of the material needs to be known a priori. However, if the
material is unknown, or the task changes, there needs to
be a method to determine these parameters online such that
the model adapts to the material without prior knowledge.
Most notably in [6] a new linearization approach for the HC
model is implemented that builds off of previous work of the
Haddadi method as first introduced in [7]. This work uses
a log linearization with an exponentially weighted recursive
least squares estimator (EWRLS) that provides promising
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results. However, to satisfy the linearization assumptions, the
velocity of the contact is limited to a threshold value with
a minimum deformation depth. A variation of the Haddadi
method was studied in [8], where EWRLS was used with a
modified Hiddadi linearization using Taylor series expansion.
In this approach, the Lankarani and Nikravesh contact model
is used instead of HC. Similarly, a variation of a Taylor series
approximation of the HC model is also examined in [9]. In
this implementation a modified Kalman filter based observer
is used for estimation. In [10], a self-perturbing recursive
least squares estimation was used to identify the parameters
of the HC as well as the linear Kelvin-Voigt model. The
estimator switched between the two models given the contact
velocity to not violate the linearization of the HC method
provided by [7]. However, this work did not incorporate any
time delay. Another method in [11] proposed approximating
the nonlinear exponential term in the HC model with a
quadratic polynomial. This avoids the drawbacks of the
Haddadi method, however, the performance is limited to the
number of polynomial terms used for estimation.

To avoid limitations of linear approximation, others have
pursued nonlinear parameter and state estimation. The work
in [12] showed promising results using an EKF for a non-
linear tissue dynamics model. More recent work in [13]
used an uncented Kalman filter (UKF) for estimating the
contact force of the HC model. These methods show promise
in accurate force estimation but there is no discussion on
parameter convergence. This limits their use for predictive
based controllers. A different approach that maintains the
nonlinearities of the HC model was investigated using a
neural network (NN) in [14], [15]. However, this requires
sufficient training of the NN. The implementation of any
other nonlinear estimation technique for the HC model is
scarce in the literature.

It must be noted that for all of these estimation tech-
niques, sufficient excitation is required to achieve parameter
convergence. Additionally, with the exception of adaptive
methods the estimators alone do not provide a control law,
and stability is achieved through another control technique.
Thus, a more robust solution is desired that addresses both
environment estimation and control of the remote system.
Moreover, previous studies using online parameter estimation
for teleoperation have not fully addressed the problems in its
implementation. For instance, although there is large support
in the use of the HC model for teleoperation in particular, few
have demonstrated a way to estimate the parameters while
maintaining the nonlinearities of the HC model. Due to the
challenge of nonlinear parameter identification, an alternate
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approach is to linearize the HC model to make it suitable for
estimation with least squares techniques such as in [6]-[11].
However, linearization assumptions can limit the application
of these methods, and naturally have increased error as they
do not truly capture the nonlinearities.

To address the shortcomings of the aforementioned meth-
ods, this paper provides a new linearization approach using
Chebyshev polynomial approximation of the HC model. As
a means of providing both trajectory tracking of the remote
system and guaranteed parameter convergence, this paper
proposes the use of adaptive backstepping with guaranteed
parameter estimation using nonlinear swapping and data
accumulation. This guaranteed adaptive parameter estima-
tion technique, termed GuAPE, is a novel application and
extension of the work first presented in [16] and [17] for
a new use in teleoperation. This paper makes the addi-
tional contribution of examining additional online nonlinear
estimation techniques using gradient descent and Leven-
berg–Marquardt (LM) algorithms. Both the proposed Cheby-
shev approximation and nonlnear methods are compared to
the most prevalent estimation techniques for the HC model
in simulation. The proposed GuAPE method with Chebyshev
approximation is then evaluated for a time delayed haptic
teleoperation system using a classical Smith predictor in a
simulation study.

II. CHEBYSHEV POLYNOMIAL APPROXIMATION

The Chebyshev polynomials form an orthonormal func-
tional basis and are particularly well suited for approximating
polynomials with periodicity. In this case for approximating
the exponential term in the HC model with sinusoidal exci-
tation of the environment. Applying the Chebyshev approx-
imation to the exponential term in the HC model gives

Fenv = Kδn +Bδnδ̇ '
∑

αiTi(x̄) +
∑

βiTi(x̄)δ̇, (1)

where x̄ is a normalization ensuring the psudo penetration
δ is on the interval [-1,1] for the Chebyshev polynomials of
the first kind Ti(x̄), and i = 0, 1, 2, . . . , n. The coefficients
αi and βi are computed by the projections

αi = NδNπK

∫ Lδ

0

δ(x̄)nTi(x̄)√
1− x̄2

dx̄,

βi = NδNπB

∫ Lδ

0

δ(x̄)nTi(x̄)√
1− x̄2

dx̄,

where Lδ is an arbitrarily defined penetration limit for a
given application, Nδ = 2/Lδ is a scaling for the normaliza-
tion of the penetration, x̄ = δNδ−1, (δ(x̄) = x̄+1

Nδ
), and Nπ

is a scaling for the orthogonality property with Nπ = 1/π
when i = 0 and Nπ = 2/π otherwise.

The Chebyshev approximation can easily be put into a
form that is convenient for parameter identification

Fenv = θ>ϕ,

with

θ = [αi, . . . , αn, βi, . . . , βn]>,

ϕ = [Ti(x̄), . . . , Tn(x̄), Ti(x̄)δ̇, . . . , Tn(x̄)δ̇]>.

Fig. 1: Comparison of Chebyshev polynomial approximation
of the HC contact model using the first 3, 4, and 5 polyno-
mials of the first kind, K = 300, B = 122, n = 1.5.

Naturally, a better fit is achieved with a greater number of
terms as depicted in Fig. 1. However, this in turn comes at the
cost of requiring a greater excitation and longer convergence
times. To alleviate the need of persistent excitation, GuAPE
is applied to this approximation as presented in IV.

III. COMPARISON OF ESTIMATION METHODS

To evaluate the performance of both linear and nonlinear
HC estimation methods a simulation study is carried out
for a simplified second order remote system in contact with
a stationary environment in MATLAB and Simulink. The
trajectory used for the contact was xd = 0.1 + 0.05 sin(2t).
Soft material parameter values of K = 300, B = 122, and
n = 1.5 were arbitrarily chosen for the simulation. Table
I presents the results of the compared estimation methods,
providing the estimation error of the contact force and
whether convergence was achieved.

The nonlinear estimation methods examined involved out-
put error optimization and Kalman filtering. Specifically
the methods studied were gradient descent, Levenberg-
Marquardt, EKF, and UKF. For the output error optimization,
the quadratic cost function being minimized was

r = (h− F )2,

where h is the measured or simulated force, and F = Kδn+
Bδnδ̇ is the modeled force. At each time step an update to
the parameter vector θ = [K,B, n]> is calculated.

For the Kalman methods, simultaneous state and parameter
estimation was implemented by augmenting the state matrix
as x = [δ, δ̇,K,B, n]T.
In discrete form the next update is given as

xk =


δk−1 + δ̇k−1∆t

δ̇k−1

Kk−1

Bk−1

nk−1

+ qk,
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with the observation equation

hk =

[
Kk−1δ

nk−1

k−1 +Bk−1δ
nk−1

k−1 δ̇k−1

δk−1 + δ̇k−1∆t

]
+ rk.

No convergence was achieved with the EKF and UKF. The
influence of the exponential term particularly proved too
sensitive for the method to estimate. Various cases were run
for different magnitudes and parameter values as well as
permutations of having one, two, or all parameters unknown
(n known with K & B unknown vs. K known with n
& B unknown etc.). The trials resulted in convergence as
long as at least one parameter is known. However, when all
three parameters are estimated, the tuning of the covariance
matrices proved to be too sensitive to achieve convergence.
Although the parameters did not converge, in all cases the
environmental force of the HC model was estimated with
high accuracy. Perhaps this is why the results of [13] only
show the estimated force, and the work in [18] assumes a
value for n.

On the other hand, both the gradient descent and LM
optimization were able to recover the parameters with vary-
ing degrees of error. However, a few modifications to the
algorithms had to be made to achieve sufficient results. Using
a constant learning rate did not achieve good performance
and resulted in small parameter updates that would require
very long estimation times. Thus, a varying learning rate α
was used that updated at each iteration to optimize α along
a line F (θk + αkpk), where pk is the search direction [19].
This results in the learning rate being calculated at each step
as

αk =
J>J

J>HJ

∣∣∣∣
θk

,

where J and H are the Jacobian and Hessian matrices of the
cost function respectively. This improved the update step,
but due to the different magnitudes of the parameters, a
scaling factor had to be applied to the update. Since the
gradient descent method is susceptible to converging at a
local result, the initial conditions were chosen on the same
relative magnitude as the true parameters, θ0 = [100 100 1].
The number of iterations for the gradient descent was kept
constant at one thousand iterations per time step. The LM
algorithm is implemented using the built in LSQNONLIN
MATLAB function. However, having one data point per time
step results in low robustness to noise. To overcome this, a
mini-batch approach is used. This is implemented with a
tapped delay line of 500 samples for each iteration of the
LM algorithm. The parameter convergence and estimation
error for both the gradient descent and the mini batch LM
is depicted in Fig. 2.

For the linearized HC methods, the proposed Chebyshev
polynomial approximation, utilizing both RLS and KF for
the estimation, was compared to the Haddadi and Quad
Poly linearization. Since the Chebyshev approximation uses
a set of polynomials for both Kδn and Bδn, there are
more parameters to identify than in the Haddadi and Quad
Poly methods. However, since the Chebyshev Polynomial

Fig. 2: Comparison of estimation techniques for Nonlinear
HC parameter identification.

Fig. 3: Comparison of estimation techniques for linearized
HC parameter identification. K = 300, B = 122, n = 1.5

approximation has a convenient algebraic form, it is suitable
for estimation with a Kalman filter as well as RLS. This
results in faster convergence and less error using the former
in comparison to the Quad Poly method. When compared
to the Haddadi method, although the proposed approach
has slightly longer convergence times, it has the benefit
of not being limited by a minimum penetration depth and
loading rate with a comparable error in force estimation.
This allows for a greater range of application in practical
use. The parameter trajectories as well as the resulting error
for these methods is shown in Fig. 3.

Ultimately, the mini-batch LM method has the fastest
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TABLE I: Simulation results of linearized and nonlinear HC
parameter estimation methods.

Method Convergence Force MSE
Kµ = 299.231 s2K = 1.633

Haddadi Bµ = 121.285 s2B = 4.207 1.219E-5
nµ = 1.499, s2n = 1.350E-6

Quad Poly yes 8.064E-3
Chebyshev RLS yes 1.922E-3
Chebyshev KF yes 5.820E-5

Kµ = 312.532 s2K=1.379E-2
Gradient Descent Bµ = 127.644 s2B=2.233E-5 1.551E-2

nµ = 1.513, s2n =5.574E-6
Kµ = 299.081 s2K = 1.207

Mini Batch LM Bµ = 119.974 s2B = 2.365 1.104E-5
nµ = 1.499 s2n =1.011E-6

EKF no 2.014E-7
UKF no 1.758E-5

convergence times and lowest error out of all the estimators
used. Since it maintains the nonlinear form of the HC
parameters as well, it is the best candidate from a perfor-
mance standpoint. In comparison, the proposed Chebyshev
approximation can be a simplified alternative with Kalman
filtering that has similar accuracy and reasonable parameter
convergence times, with no limiting assumptions for the lin-
earization. Thus, depending on bandwidth and convergence
criteria, either of the proposed Chebyshev approximation or
LM method are improved alternative estimation methods for
the HC model that can be used in a teleoperation system.

IV. GUARANTEED ADAPTIVE PARAMETER ESTIMATION

Although the estimation methods above provide good
parameter convergence and accuracy, they have the drawback
of requiring sufficient excitation for parameter convergence.
Moreover, they do not address the control of the remote side
system. To address these shortcomings of the above esti-
mation techniques, the use of adaptive parameter estimation
with nonlinear swapping and data accumulation is proposed
as a solution. This method was originally introduced in
[17] for state parameter estimation. This work modifies
the method to estimate the contact force model parameters
influenced by the control instead of state parameters as
originally formulated. The proposed method as applied here
will be refered to as the guaranteed adaptive parameter
estimation (GuAPE) method. The following presents the
derivation for applying the adaptive parameter estimation
method to a general second order system with an externally
applied force.

Given a system of the form

ẋ1 = x2,

ẋ2 = −a1x1 − a2x2 + b(u− Fe),

with states x1 and x2 as the position and velocity, the
external force Fe is modeled as the Chebyshev polynomial
approximation of the nonlinear HC environment force as
defined in equation 1. Nonlinear backstepping is applied
to develop a controller for the system to track a reference
trajectory with the error defined as

z1 = x1 − yr,

where yr = xr1 from a second order reference system

ẋr = Arxr +Brr,

with xr = [xr1 xr2]> and Ar Hurwitz. x2 is used as a virtual
control with the stabilizing function chosen as

α1 = −c1z1 + ẏr.

Defining z2 = x2 − α1, the error dynamics become

ż1 = ẋ1 − ẏr = x2 − α1 − c1z1 = z2 − c1z1,

ż2 = ẋ2 − α̇1 = −a1x1 − a2x2 + bu− bθ>ϕ− α̇1,

where α̇1 = −c1ż1 + ÿr = −c1x2 + c1ẏr + ÿr making

ż2 = −a1x1 − a2x2 + bu− bθ>ϕ+ c1x2 − c1ẏr − ÿr.

Choosing the Lyapunov function as

V1(z1, z2) =
1

2
z2

1 +
1

2
z2

2 ,

V̇1 = z1ż1 + z2ż2

= z1z2 − c1z2
1 + z2(−a1x1 − a2x2+

bu− bθ>ϕ+ c1x2 − c1ẏr − ÿr).

To ensure that V̇ is negative definite the control input is
selected as

u =
1

b
(−z1 − c2z2 + a1x1 + a2x2 +

bθ>ϕ− c1x2 + c1ẏr + ÿr).

Substituting the estimates in the control the error dynamics
are now

ż1 = z2 − c1z1,

ż2 = −z1 − c2z2 − bθ̃>ϕ,

with θ̃ = θ− θ̂. The parameter update is now obtained from
the Lypunov function

V2(V1, θ̃) =
1

2
z2

1 +
1

2
z2

2 +
1

2
θ̃>Γ−1

θ θ̃,

V̇2 = z1ż1 + z2ż2 + θ̃>Γ−1
θ

˙̃
θ

= −c1z2
1 − c2z2

2 − θ̃>(z2bϕ+ Γ−1
θ

˙̂
θ),

(2)

with tuning matrix Γθ, giving the update law

˙̂
θ = −Γθz2bϕ. (3)

From here, the nonlinear swapping filters below are applied
with the estimator dynamics specifically for this system now
defined as

˙̂x = Ax+B(u− ϕ>θ̂)− Λx(X − X̂) +K−1
x Wx

˙̂
θ,

Ẇx = ΛxWx +KxG,

such that
˙̃ε = Λxε̃, ε̃(0) = ex(0),

where ex = x − x̂, Wx ∈ Rn×p, ε̃ ∈ Rn×1, and
the tuning matrices Kx = diag(kx1 , . . . , kxn) and Λx =
diag(λx1 , . . . , λxn) are positive definite and negative definite
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respectively. All filter signals are globally bounded and
Wxθ̃ = ςx with the relation ςx = Kx(ex− ε̃). The coordinate
transform ψ = Qθ is performed with data accumulation such
that

Q̇ = Λr(Qr −Q)W>x RxWx, Q(0) = 0,

ψ̇ = −Λr(Qr −Q)W>x Rx(ςx +Wxθ̂), ψ(0) = 0,

and
ψ̂ = Qθ̂,

where Rx is positive definite, Λr is negative definite, Qr is
a constant full rank reference matrix, and ψ̃ = ψ− ψ̂ = Qθ̃.
The parameter update law in equation 3 is now modified to
give

˙̂
θ = Γθ(−z2bϕ+ µ),

where the modifier µ is defined through known quantities as

µ = Mθ̃ = W>x Γxςx +Q>Γψψ̃.

The purpose of this modifier is to augment the parameter
update such that when Q achieves full rank, M is positive
definite. This makes the Lyapunov derivative in equation 2
become

V̇2 = −z>Cz − θ̃>Mθ̃, (4)

where C is a positive definite matrix of control gains c1 & c2
for z = [z1 z2]>. Since V̇2 is negative definite, the estimation
error converges to zero according to the LaSalle-Yoshizawa
theorem [20].

V. MASTER SIDE MODEL UPDATE

In this study a Smith predictor is used on the master side
for the main teleoperation control strategy to deal with the
time delay. The block diagram in Fig. 4 shows the described
system with the proposed estimation method. When the HC
parameters utilized in the Smith predictor are updated from
an initial a priori estimate, care must be taken that this
transition does not disrupt operation with a jump in the
estimated force. To provide a smooth transition and maintain
continuity in the signal, the use of a Sigmoid function is
proposed. The function is defined as

α = 1− 1

1 + eγ(t−β)
,

where γ and β are a scaling factor and offset, respectively,
to change the slope and timing of the parameter transition.
Once a new parameter set is converged, α is used to transition
from the initial parameters to the new parameters as follows

F1 = θ>1 ϕ,

F2 = θ>2 ϕ,

F = αF2 + (1− α)F1,

where F is the haptic force being sent to the user. The
criteria for when a new parameter set is ready to be used
can be heuristically determined based on application. This
can be very helpful depending what estimation method is
used by allowing an updated force to be sent smoothly

Fig. 4: Block diagram of implemented adaptive parameter
estimation method with a Smith predictor.

Fig. 5: 2s RTT GuAPE simulation. Subscripts u, m, f, and e
refer to the user, master, follower, and contact location.

even while parameters are changing to minimize the delay
between contact and updated force rendering. The update
criteria used here is when the root mean square error between
the estimated and measured force is less then the desired
tolerance.

VI. TELEOPERATION SIMULATION

The GuAPE approach is applied to a time delayed haptic
teleoperation system described in Fig. 4 in simulation using
Simulink. The master and remote devices are generalized as
identical second order mass spring damper systems, and the
derivation in IV is used for the control and update laws.
The predictive controller is implemented at an arbitrarily
chosen 1k Hz. The contact location is assumed to be known
a priori at xe = 0.01m and the user input force is chosen
as Fu = 2.5 + 0.5 sin(6t). The tuning parameters for the
simulation are Γθ = 10, Γx = Rx = 30I[2×2], Γψ =
250I[6×6], Qr = 20I[6×6], Kx = 2I[2×2], Λr = −10I[6×6],
and Λx = −20I[2×2].

Fig. 5 shows the system performance with the proposed
control architecture for a round trip time (RTT) delay of
2 seconds. The adaptive backsteping control law achieves
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Fig. 6: Parameter Convergence for 2s RTT using GuAPE.

asymptotic position tracking of the master signal. An initial
guess for parameters was chosen greater than the true param-
eters resulting in an overestimation of the environment con-
tact force. This initial guess was corrected at approximately
2.5s when the estimated force error was sufficiently small to
send the parameter update. The estimated force transition
can be seen in the bottom subplot of Fig. 5. After the
parameters adapt sufficiently, the estimated force converges
to the environment force. Using the Smith predictor corrected
force along with the reflected force results in a larger error,
therefore only the initial estimated force of the predictor is
used for force feedback.

The true HC parameters were K = 300, B = 122, and
n = 1.5. Projecting this onto the Chebyshev polynomial
approximation using the first 3 polynomials results in the true
parameters θ = [4.026, 4.831, 0.690, 1.63738, 1.964, 0.280]
for Nδ = 20.

The parameter adaptation is shown in Fig. 6. The
final values after 10s for the estimates are θ̂ =
[4.315, 5.255, 0.940, 1.999, 2.614, 0.548], with a force esti-
mation MSE error of 4.425E-7 N. The difference in the
parameter values is in part a result of using only the first
3 polynomials for the estimation as the lower number of
terms must be weighted differently to make up for the
higher order nonlinearity matching. M was observed to be
positive definite for the entire duration of estimation, thus
ensuring parameter convergence. Overall, these results show
promise for the GuAPE method to be used for estimation
of the Chebyshev approximated HC parameters. Of note
is the stability and performance of this method in a RTT
of 2s. Moreover, the ability for the Smith predictor to
smoothly transition between parameter updates to make up
for incorrect initial values gives confidence in the robustness
of this architecture for use in application.

VII. CONCLUSIONS

This work provided a quantitative analysis comparing
linear and nonlinear estimation methods for the HC con-
tact model. Additionally, a new linearization method that
uses Chebyshev polynomial approximation was proposed
and compared to existing methods. Simulation results show
its capability with good convergence time and accuracy
while not being limited to the linearization assumptions of
current methods. Moreover, an adaptive parameter estimation
technique that provides control through backstepping with

guaranteed parameter estimation was proposed and evaluated
in a full teleoperation system simulation. Results show
good tracking of the desired master position with parameter
convergence resulting in high accuracy force estimation.
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