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Abstract— Recent progress in deep reinforcement learning
has enabled agents to autonomously learn complex control
strategies from scratch. Model-free approaches like Deep
Deterministic Policy Gradients (DDPG) seem promising for
applications with intricate dynamics, such as contact-rich
manipulation tasks. However, these methods typically require
large amounts of training data or meticulous hyperparameter
tuning, limiting their usefulness for real-world robotics appli-
cations. In this paper, we evaluate and benchmark our re-
cently proposed approach for improving model-free reinforce-
ment learning with DDPG through Qgraph-based bounds in
temporal difference learning. We directly apply the algorithm
to a challenging real-world industrial insertion task and as-
sess its performance (see https://youtu.be/Z_GcNbCWE-E).
Empirical results show that the insertion task can be learned
despite significant frictional forces and uncertainty, even in
sparse-reward settings. We present an in-depth comparison
based on a large number of experiments and demonstrate
the advantages and performance of Qgraph-bounded DDPG:
the learning process can be significantly sped up, robustified
against bad choices of hyperparameters and runs with less
memory requirements. Lastly, the presented results extend
the current theoretical understanding of the link between data
graph structure and soft divergence in DDPG.

I. Introduction

There is a strong interest from industry to economi-
cally automate contact-rich assembly tasks such as shaft
insertion or cable plugging for small and medium lot sizes.
Based on our experience, classical solutions based on
compliant control require prohibitive effort in designing
appropriate manipulation strategies and tuning, even
though the latter might be attenuated with black-box
optimization strategies [1].

In this context, to devise generalizable and scalable
solutions, we are interested in Deep Reinforcement Learn-
ing (RL). It enables autonomous agents to learn complex
behaviors from experience. Examples include (simulated)
continuous control tasks [2] or games [3]. Although often
requiring significant amounts of data, model-free RL
algorithms exhibit properties which seem particularly
promising for robotics. As they neither require accurate
dynamics models nor try to explicitly fit them, the
disadvantages of identifying models and quantifying their
trustworthiness [4] are alleviated. Recent work [5, 6]
shows that model-free RL can indeed scale and perform
well in robotics applications.
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Fig. 1. Left: the Franka Emika Panda robot employed for fitting an
eBike motor shaft into a ball-bearing located in the motor housing.
Right: a close-up view on the shaft.

On the algorithmic side, it is interesting to note that
the theoretical understanding of RL algorithms can often
not keep up with their practical success. For instance,
deep Q-Learning [7] and DDPG [2] belong to the most
popular model-free deep RL methods today and show
excellent empirical performance. However, they are still
not fully understood from a theoretical perspective [8].
In particular, Q-Learning has already been characterized
as unstable even with linear function approximation in
the 1990s [9]. These instabilities appear in the form of
difficulties in reproducibility [10] or soft divergence, i.e.
predicted Q-values outside of theoretically determined in-
tervals [8]. These issues have recently attracted increased
interest in the machine learning community [8, 11, 12].
In [12], we showed the link between the issue of soft
divergence and the structure of the underlying data
graph and introduced a novel method to stabilize DDPG
through so-called Qgraph-based bounds.

Contributions of This Paper

So far, we only evaluated our novel method on a
small-scale, simulated peg-in-hole problem with triv-
ial physics [12]. In this paper, we take a closer
look at Qgraph-bounded DDPG and demonstrate its
usefulness and advantages in an applied industrial
robotics task (a video for illustration is available at
https://youtu.be/Z_GcNbCWE-E). In particular, the
contributions of this paper are as follows:

1) for the first time, the method from [12] is applied
to a full-scale robot, which learns to perform a
non-trivial insertion task using real industrial parts
(Fig. 1).

2) we empirically evaluate the performance of Qgraph-
bounded DDPG in extensive experiments and show
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a detailed comparison to classical DDPG.
3) we extend the theoretical insights from [12] in one

aspect, namely we demonstrate that soft divergence
also occurs for indirectly linked transitions as the
length of the path to the terminal state increases.

II. Preliminaries

We consider a standard reinforcement learning setup
in which an autonomous agent interacts with its environ-
ment. At each discrete time step t, the agent can observe
the state st and choose an action at = π(st) which
determines the next state st+1. After each action, the
agent receives a reward rt = R(st, at, st+1). The environ-
ment is represented as a Markov Decision Process (MDP)
with states, actions, (potentially stochastic) transition
dynamics and a reward function.

The expected sum over discounted future rewards
when following a policy π from state s is called re-
turn Rπ

s = E
∑T

i=0 γ
i−1ri, where γ ∈ [0, 1) is called

discount factor. To incorporate off-policy behavior, i.e.
actions not originating from the current policy π, a
Q-value can be defined as the expected sum over fu-
ture rewards when any action at is executed at the
current time step and π is followed from then on:
Qπ(st, at) = R(st, at, st+1) + γRπ

st+1
.

The agent’s goal is to find an optimal policy π∗ which
chooses the action that will maximize the return for each
state. One way to achieve such optimal behavior is to
identify the Q-function for the environment at hand and
select the action that maximizes Q at each time step. A
popular way to find the Q-function is temporal difference
(TD) learning, in which the estimate of Q(s, a) is updated
using both experience and the current estimate of the
Q-function for the succeeding state:

Qtarget(st, at) =

{
rt, if st+1 is terminal
rt + γ ·Q(st+1, π(st+1)) else.

(1)
Neural networks are a popular choice for function

approximators in TD-learning. In DDPG, an actor-critic
architecture is created with two networks: the actor
network represents the deterministic policy π, the critic
network takes a state-action pair as input and predicts
the associated Q-value [2]. The actor network can then
be trained end-to-end to maximize the critic’s output.

III. Related Work

A. Industrial Shaft Fitting Task

In this work, we consider a realistic industrial manufac-
turing step taken from a Bosch eBike motor plant. The
task is to achieve a tight fit between a shaft and a ball
bearing in a motor housing. It can be considered a variant
of classical peg-in-hole insertion, which belongs to the
most extensively studied assembly problems in robotics.
A complete review of peg-in-hole insertion methods is

beyond the scope of this paper, in the following we only
provide a coarse overview.

Especially in the context of industrial robotics, much
effort is spent on providing hardware solutions for
reliably executing insertion tasks. Successful examples
are the active and controllable remote center compliance
element from [13] or the vibration device presented
in [14].

Torque-controlled robots as well as manipulators
equipped with force/torque sensors can be used to
implement force-controlled approaches to peg insertion.
Often, an analytic point of view is adopted, trying to
model and understand the contact physics and then
deriving control strategies [15, 16]. A crucial element
of these methods is the accurate estimation of contact
states, which is challenging but pivotal to the success
of the insertion [17]. Once a contact has been estab-
lished, compliant controllers are used to perform the
insertion itself [18]. Most classical methods require the
specification of a sequence of contact states and careful
controller design. There have been efforts to lessen the
manual engineering work using black-box optimization
for controller tuning [1]. Nevertheless, our experience
with these approaches indicated that they are typically
not robust to variations of model parameters like (static)
friction or force limits. Also, they still require intricate
manual strategy design and significant tuning effort to
work for specific instances of the problem.

The insertion task considered in this work requires
both high accuracy and significant force when solved
using classical machinery: High accuracy is required to
precisely align the bearing and the shaft. High force is
required to overcome significant resistance of the fitting
process originating from the mechanical specification
and static friction effects. The accompanying video
(https://youtu.be/Z_GcNbCWE-E) shows the insertion
as performed by a human, which requires force greater
than 10 N and a determined push to reach the final
configuration. Note that the motor housing is turned
upside down for the videos to obtain a better field of
view around the ball bearing.

Our objective is not to investigate the entire process
including grasping the shaft and positioning it in the
vicinity of the ball-bearing – these steps are beyond the
scope of the paper. Instead, we focus on performing the
insertion step: it starts in loose, randomly oriented con-
tact with the ball bearing, requires significant interaction
force and ends with the shaft being completely inserted
with some predefined accuracy.

B. Efficient Learning for Contact-Rich Manipulation
Recent progress in reinforcement learning techniques

has enabled agents to autonomously learn complex be-
havior as long as enough data is available [19]. To prevent
costly data collections, the robotics and machine learning
communities have developed a variety of techniques to
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improve sample efficiency.
Since supervised learning is more efficient than re-

inforcement learning [20], one promising approach is
to exploit supervised learning to imitate model-based
solutions [21, 22]. Finding a model accurate enough for
contact-rich manipulation tasks however is challenging,
even for data-driven approaches [23]. Residual networks,
in which only an offset to an analytical model is
learned, have been shown to be a particularly efficient
solution [24].

Residual policies transfer this idea to reinforcement
learning [25, 26]. We employ a residual formulation to
infuse general knowledge about insertion tasks.

Only few model-free reinforcement learning ap-
proaches have addressed industrially relevant tasks and
often make additional assumptions such as the availabil-
ity of CAD models [22, 27, 28]. In [29], a peg insertion
task is learned from discrete actions in a Q-learning
formulation using LSTMs.

C. Qgraph-bounded DDPG
At the core of our solution is DDPG, a model-free

method that can handle continuous state and action
spaces. Since even linear function approximators can eas-
ily diverge in TD learning settings [9], highly non-linear
neural networks can lead to significant instabilities in the
learning process [8]. Qgraph-bounded DDPG (QG) [12]
suggests to counteract these instabilities using a so-
called data graph, from which a Qgraph can be derived
and associated lower bounds on the Q-values can be
computed. Those bounds can be enforced during TD-
learning, which in return stabilizes the training process.

Data from the agent’s interaction with the environ-
ment is stored in a replay memory, which can be thought
of as a list of transitions (st, at, st+1, rt) with state-action
pairs, the state that is reached, and the reward that was
received. Alternatively, this data can be represented as
a graph where the nodes correspond to states and edges
represent actions [30, 31]. In [12] it is shown that the
structure of this data graph is directly linked to soft
divergence in Q-learning: Transitions ending in terminal
states are least likely to cause soft divergence, because in
this case, TD learning reduces to supervised learning (cf.
the first line in Eq. (1)). Similarly, transitions towards
states that are indirectly connected to a terminal state,
i.e. through few further transitions, are less likely to
cause divergence than states which are not connected
to a terminal state at all. Loose ends can, for instance,
appear when an episode is finished due to a timeout but
the agent has not reached a terminal state.

In QG, a subgraph of the data graph is extracted
such that under the assumption of completeness, all
associated Q-values can be computed analytically. This
subgraph, annotated with its Q-values, is referred to
as Qgraph. The Q-values in the Qgraph are exact for
the subproblem derived from the data graph, but do

not transfer directly to the original learning problem.
Instead, they are lower bounds to the Q-values for the
original MDP. In theory, this only holds for deterministic
environments, but empirically the method has also been
applied to stochastic settings in [12]. Further, it was
shown that additional lower and upper bounds can
be derived a priori, e.g. based on the domain of the
reward function. In TD-learning, lower and upper bounds
(LB/UB) can be enforced in the so-called Q-target from
Eq. (1) by clipping as follows:

Qtarget(st, at) = min (UB,max (LB, Qtarget(st, at))) .

In many cases, the structure of the data graph can
be artificially enhanced through zero actions. These are
actions that do not change the robot state, e.g. by
applying zero velocity. If such a zero action is known,
it can be artificially added to each state the agent has
encountered so far. This creates self-loops in the data
graph and can be used to eliminate loose ends, i.e. non-
terminal states from which the agent has never executed
any action. Loose ends can for instance appear when
an episode is finished due to a timeout but the agent
has not reached a terminal state, and have been linked
to soft divergence in [12]. Using zero actions, loose ends
can be turned into disconnected states through self-loops
and thus, new or potentially tighter lower bounds in the
Qgraph can be derived which helps to stabilize learning.

IV. Method

A. Problem Formulation using a Residual Policy
One of the major drivers for sample complexity in

many reinforcement learning problems is exploration [32].
In general, adding prior (possibly domain-specific) knowl-
edge, can speed up this phase [33]. If the character of
the task is known, e.g. in our case a shaft insertion
with a dominant direction of force, this knowledge can
be efficiently incorporated into the problem through
residual policies [25, 26]: the agent then does not learn
the full behavior from scratch but an addition to a fixed
policy. In this spirit, we model the insertion task as an
MDP with the following definitions.

1) States: a state is defined as (f̂x, f̂y, τ̂x, τ̂y), which
are the estimated contact forces and torques in X and
Y direction in the endeffector frame, c.f. Fig. 1. Torques
along the Z axis correspond to a rotation around the
shaft’s symmetry axis and are omitted.

2) Actions: the actions are formulated as task-space
wrenches and consist of a constant and a residual policy
component from the MDP:

• the constant part of the policy exerts a force fz =
−15 N in z-direction of the endeffector frame, c.f.
Fig. 1.

• the residual actions as defined in the MDP consist
of torques [τ rx , τ ry ] along the x and y axes of the
endeffector frame and are computed directly as the
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Fig. 2. Distributions of predicted Q-values by classical deep Q-
learning on transitions in a chain of 100 states; including zero
actions (orange) or not (blue). Transition ’X-Y’ represents the
transition from X to Y. Adding zero actions helps to reduce the
variance significantly.

output of the actor network scaled to the interval
[−3, 3] Nm.

Combined, a feedforward wrench ζtool = [0 0 fz τ rx τ ry 0]
is obtained and set as reference to a hybrid task-
space force/impedance controller [34] together with the
current endeffector pose. The controller position gains
are constantly set to 250 N/m in X and Y direction and
0 N/m in Z. The orientation gain is set to be 4.0 Nm/rad
in all directions.

When executing the policy, an action is considered
completed once the robot’s endeffector reaches a steady
state with velocities below a predefined threshold. In
essence, this leads to the robot applying constant force
in z-direction of the shaft, while the residual policy allows
to apply torque to the shaft and rotate the endeffector
in space.

Lastly, the controller allows to impose a limit onto
the orientation of the tool. In this work, we limit the
maximum tool tilt to be equal to π

4 w.r.t. the horizon-
tal ground plane, which essentially allows the learning
algorithm to safely explore all end-effector orientations
within a cone of π

2 opening angle w.r.t. the table.
3) Reward: We investigate two different reward func-

tions:
• Sparse reward: in this setting, we use a reward of

r = −1 for each transition and r = 0 if the terminal
state is reached.

• Dense reward: the reward is considered proportional
to the distance error between the current endeffector
pose and a target endeffector pose (corresponding
to a fully inserted peg). The distance error in
position ∆P is computed as the l2 norm of the
Euclidean position difference vector. The distance
error in orientation ∆R is computed as the l2 norm
of the angle-axis error in x and y rotation, since
the insertion task is invariant to z orientation. The
combined reward is then computed as

r = rP+rR =
1

2

(
exp

(
−∆R

σR

)
+ exp

(
−∆P

σP

))
−1

with manually tuned scaling factors σP = 0.015 and
σR = 0.7. This formulation guarantees that r is
always in [−1, 0].

B. Motivation for Bounded DDPG
Employing the residual policy, the agent reaches the

goal in many episodes – so instead of loose ends or discon-
nected transitions, the predominant type of transitions
in our problem are indirectly connected ones. In [12],
those were evaluated in a toy example and did not cause
significant divergence. In our setting, however, the path
length between initial- and target state can easily reach
high numbers, up to 1,000. After having observed soft
divergence of classical DDPG frequently in these cases,
we designed an extended toy example to demonstrate
this type of soft divergence in a principled way. The
example considers the following chain

0 1 2 ... 10 ... 20 ... 100

in which 100 states are linked as a chain that leads to
the terminal state zero. This is an abstraction of the
states that would be added to the replay memory after
a long trajectory which ended at the goal state. If zero
actions are known, the graph could be enhanced by self-
loops at each node. Assuming that each transition is
associated with reward −1 and there is a fixed trivial
policy following the chain transitions, we trained a
DDPG-like critic to approximate Q-values based on these
chain transitions only. We compare the original dataset
(‘chain’) against the enhanced dataset (‘ZA’) in which
self-loops exist in addition to each state in the chain.
Note that we only changed the data, not the training
algorithm.

As the results in Fig. 2 show, Q values predicted by
classical deep Q-learning cover an increasing interval
as the distance of states to the terminal state grows.
Adding zero actions already helps to reduce this variance
significantly. Yet, the predictions including zero actions
are negatively biased: for instance, the true Q-value for
the transition from state one to state zero is 0, but deep
Q-learning predicts a value around −15.

We take these results as a motivation to apply QG to
our industrial task and endorse the method’s advantages
in Section VI. More precisely, we apply the following
items in the QG conditions:

1) Qgraph-based lower bounds, enforced in TD tar-
gets

2) a priori lower and upper bounds based on the
minimum and maximum reward: rmin=−1

1−γ ≤ Q ≤
rmax=0
1−γ = 0,

3) zero actions which here correspond to zero residu-
als.

V. Experimental Setup

All experiments in Sec. VI followed the same setup:
The training phase consisted of 40 episodes. To start an
episode, the endeffector was manually set to one out of
eight initial poses with different inclinations (see video
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attachment). Each episode was stopped when either the
target state or a maximum of 1000 steps was reached.
We implemented a pose-based heuristic to verify whether
the target state is reached, but always confirmed this
by detailed inspection and manual feedback because of
possible slippage between shaft and gripper fingers. The
network was trained after every cycle consisting of 20
steps; the number of training iterations after each cycle
is one of the hyperparameters investigated in Section VI-
B.

The test phase consisted of eight more episodes also
covering all initial positions. A test episode was stopped
after 200 steps if the target is not reached, the remaining
setup remained unchanged to the training phase.

A. Network Details

All networks were implemented in Tensorflow. Both
the actor and critic network consist of three fully
connected layers, where the two hidden layers contain
100 nodes. The actor network has tanh-activations on
all layers and a two-dimensional output; all weights were
initialized from a Glorot uniform distribution. The critic
network has ReLU activations on the first two layers
and no non-linearity on the one-dimensional output; the
weights are initialized from a He uniform distribution.
The forces and torques which served as state descriptors
to the critic network were linearly scaled such that all
values were in [−1,+1]. For optimization, the Adam
optimizer was used – different learning rates and the
number of training iterations per cycle were tuned on
a grid of hyperparameters as described in Sec. VI-
B. Following the argumentation in [8, 12], no target
networks were used since they are known to delay but
not prevent divergence.

B. Robot Control

All experiments were performed on a Franka Emika
Panda CoBot, where we controlled the joint torques at
1 kHz using a custom control toolchain. Throughout
this work, for rigid body kinematics and dynamics we
employed the open-source library ‘Pinocchio’ [35]. The
required inertial parameters of our Panda robot were
identified using an LMI-approach as presented in [36].
The end-effector contact wrench was estimated at 1 kHz
real-time using an Extendend Kalman Filter-based dis-
turbance observer implementation taken from [37]. The
gripper was controlled to grasp the shaft with a constant
gripping force. In order to ensure a safe grasp, we used
custom-printed finger tips shaped such that a variety of
cylindrical objects can be centered and grasped robustly
(see Fig. 1).

VI. Results

To validate the theoretical claims from [12] on our
industrial force-fitting task, we evaluated the following
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Fig. 3. Random baseline performance: distribution of the number
of steps per episode for different random actions. Each episode
was stopped after 1000 steps if not successful and the experiment
consisted of up to 3000 steps.

aspects of the learning system: random baselines, ro-
bustness to hyperparameters, reproducibility of results,
sparse rewards, limited replay memory capacity and
generalization capability.

Due to the stochasticity of the experiments, we ran
each experiment three times with different random seeds.
All plots illustrating these results show the mean as a
solid line surrounded by a shaded area representing the
standard deviation of the mean estimator, i.e. σ√

n=3
. One

experiment took between 30 and 180 minutes, in total the
results in the following sections sum up to approximately
60 hours of real world interaction.

A. Task Difficulty and Baselines

As mentioned in Sec. III-A, significant force and
precision is needed to fit our shaft into the ball bearing
(see video attachment). On the other hand, the constant
part of our residual policy serves as a strong prior
for this type of task. We therefore first evaluated a
number of random baselines: instead of the actor net
output, the residual policy consists of randomly sampled
actions in the same output range. We compare uniform
sampling and two of the standard noise processes for
exploration in reinforcement learning [32, 33], namely
Gaussian noise (’normal’) and Ornstein-Uhlenbeck (’ou’),
both with different σ1.

As Fig. 3 shows, the uniformly sampled random
actions show the best performance and solve the task
in 32 steps on average.

B. Sample Efficiency and Robustness to Hyperparame-
ters

To obtain a broad overview of learning performance,
we tuned those hyperparameters that are most related
to sample efficiency on a grid: learning rates for actor
and critic networks, as well as the number of training
iterations per cycle.

We tested learning rates in [10−5, 10−4, 10−3, 10−2] for
the critic and used one tenth of this learning rate for the
actor. In prestudies a smaller learning rate for the actor
seemed advantageous and confirms results from [12]. We
further used either 10 or 50 training iterations per cycle.

1for Ornstein-Uhlenbeck noise, we use θ = 1 and dt = 0.01
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Fig. 4. Performance comparison on full grid of hyperparameters.
Lower (darker) is better, entries beating all random baselines are
highlighted by *. While classical DDPG outperforms the random
baseline in just one out of eight cases, QG-DDPG achieves this in
six cases.

Each of these eight combinations of hyperparameters
was tested with 3 random seeds and both algorithms,
leading to robot interactions of approximately 48 hours
for this particular experiment. Fig. 4 shows the mean
number of steps needed to successfully complete the task
at test time for each combination of hyperparameters.
Bearing in mind that the best baseline from Sec VI-A
solved the task within 32 episodes, one can see that
vanilla DDPG outperforms uniformly sampled action
under only one particular set of hyperparameters. QG,
however, performs better than any random baseline in 6
out of 8 cases.

For closer inspection, Fig. 5 depicts learning curves for
the most favorable and unfavorable hyperparameters for
both algorithms and plots the development of train and
test performance. The shaded area represents the stan-
dard deviation of the mean estimator for performance
during training episodes, the intervals on the right show
the same confidence interval for test time results.

For the best case hyperparameters, we can see that
both algorithms’ test time performances are quite close,
which is in line with the findings in [12]. Interestingly,
the variance during training is lower for QG, potentially
indicating higher reliability and reproducibility.

For the worst case hyperparameters, one can observe
two effects: First, DDPG does not solve the task even
once (at 200, the episodes were stopped if not successful).
QG also decreases in performance but still solves the
task.

To verify whether the continuous decrease in per-
formance for the DDPG worst case is the effect of
soft divergence, we analyzed the mean Q-value over
time. The result in Fig. 6 shows that only for DDPG
and unfavorable hyperparameters the Q-values diverge
over time, while even bad trials of QG do not lead to
divergence.

The dotted green line illustrates anecdotal results from
a single run of QG in an extended setting where not
only the initial shaft orientation was changed, but also
the ball bearing orientation changed iteration after 4
episodes (and every second episode at test time). This
evaluation is shown in the video attachment (https://
youtu.be/Z_GcNbCWE-E).
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Fig. 5. Best and worst case performance for vanilla DDPG and
Qgraph-bounded DDPG (QG). The x-axis shows the number of
episodes and at each tick, the performance of 8 episodes has been
averaged. The y-axis extends to 200, which is the worst possible test
time performance in our setting. The green dotted line illustrates
QG’s performance on a more general and time-consuming task,
where the orientation of the motor housing is changed for every
fourth training episode and every second test episode.

C. Robustness to Sparse Rewards and Limited Memory

To successfully apply reinforcement learning in prac-
tice, robustness is not only desirable w.r.t. hyperparame-
ters but also regarding other design choices. Exemplarily,
we here assess a drastic change in the reward function
to sparse rewards, and a replay memory buffer that is
limited to only 300 transitions. Sparse rewards are a
natural formulation for our setting because they reflect
more precisely our evaluation criterion (the number of
steps) and at the same time circumvent all issues related
to reward shaping because the endeffector pose of the
robot only partially reflects the shaft pose. Limited mem-
ory availability is particularly interesting in industrial
robotics as it creates a setting that is closer to the
requirements of embedded AI.

Fig. 7 summarizes the results for both sparse rewards
and limited memory capacity under their respective best
hyperparameter configurations. We can observe that QG
still performs better than random on average for both
settings while DDPG does not. Additionally, QG keeps
the relatively low variance in performance, while the
variance for DDPG increases significantly compared to
its peak performance as in Fig. 5.
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Fig. 6. Evolution of mean Q-values over training episodes for the
same hyperparameters as in Fig. 5. Only DDPG diverges under bad
hyperparameters while QG-DDPG is robust against those. The line
represents the mean over all trials, the shaded area spans the full
range between minimum and maximum.
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Fig. 7. Robustness to changes in the learning setting: sparse
rewards (blue) and limited memory capacity (orange) for vanilla
DDPG (dashed) and QG (solid lines). Both axes are scaled as in
Fig. 5 for comparison.

VII. Conclusion
Targeting an industrial force fitting task, we have

chosen an efficient formulation of a reinforcement learn-
ing problem using residual policies. Applying classical
DDPG in this setting tends to lead to soft divergence. We
therefore extended the toy example introduced in [12] to
accommodate the specific types of data graph structures
originating from residual policies and could demonstrate
a novel case of soft divergence. With more than 60 hours
of real-world interaction, we have provided empirical
evidence that Qgraph-bounded DDPG (QG) can indeed
prevent this type of soft divergence and exhibits a series
of further advantages: A grid search over hyperparam-
eters has revealed that QG reaches good performance
six times more often than vanilla DDPG. Results for
one given set of hyperparameters differ less for QG,
indicating improved reproducibility. QG is also able to
deal more gracefully with further changes in the learning
setup, such as sparse rewards and limited replay mem-
ory. We showcase the generalization capabilities of our
approach to varying ball bearing orientations, for which
the algorithm autonomously discovers an appropriate
insertion strategy.

Interesting questions for future work arise in several
directions: For a real-world industrial assembly process,
the shaft insertion may have to be integrated with other
steps such as grasping the shaft or positioning the motor
housing. In particular it would be interesting to explore
the limits of uncertainty from imprecise grasps that the
system can learn to deal with. It is an open question to
which degree the results in this paper generalize across
different assembly processes; and whether manual tuning
for the transfer between processes can be reduced. Data
graphs as used here work on the level of raw observa-
tions, but may be extended in the future to integrate
state aggregation or different levels of hierarchy. Our
understanding of convergence in model-free off-policy
deep reinforcement learning is still limited – for instance
how the specific MDP formulation interacts with which
hyperparameters and convergence properties. This lack
of theoretically grounded insights in turn clearly leads

to increased tuning efforts for practitioners. We also
leave the comparison of QG-DDPG to further model-free
methods for future work.
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