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Abstract— Juggling manipulation is one of difficult manipu-
lation to acquire since some of such manipulation is unstable
and also its physical model is unknown due to the complex non-
prehensile manipulation. To acquire these unstable unknown-
dynamics juggling manipulation, we propose a method for
designing the predictive model of manipulation with a deep
neural network, and a real-time optimal control law with
some robustness and adaptability using backpropagation of
the network. In this study, we apply this method to diabolo
orientation stabilization, which is one of unstable unknown-
dynamics juggling manipulation. We verify the effectiveness
of the proposed method by comparing with basic controllers
such as P Controller or PID Controller, and also check the
adaptability of the proposed controller by some experiments
with a real life-sized humanoid robot.

I. INTRODUCTION

Robots are expected to behave and manipulate like human,
and in order to realize that, researchers have been tackling
a wide range of motion planning or control with various
robots. However there are a lot of manipulation left which
robots haven’t acquired yet because of its difficulty. In this
study, we focus on juggling manipulation as one of such
manipulation. Juggling manipulation by robots is considered
to be important from the point of view of both its difficulty
and its application. In regards to its difficulty, some of
juggling manipulation are dynamic, and the dynamics is
usually unknown because of the complex physical model
of nonprehensile manipulation. Especially it is much more
difficult to acquire unstable juggling manipulation. We re-
fer to such juggling manipulation as unstable unknown-
dynamics juggling manipulation. There are less studies about
this manipulation, and in this study we aim to acquire diabolo
orientation stabilization shown in Fig. 1 (b), which is one of
unstable unknown-dynamics juggling manipulation.

In regards to its application of juggling manipulation,
it can become one of entertainment for human. Not only
working robots as an alternative for human but also per-
forming robots as entertainment for human have been widely
developed to enrich human life, such as dog-shaped robots
or dancing humanoid robots. Also in the field of social
psychology or physiology, it was reported that entertainment
robots are useful as therapy for elderly people or children
with autism.
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(a) Diabolo tools. A red diabolo top
and two white sticks connected with
a rope.

(b) Diabolo orientation
stabilization by PR2.

Fig. 1. Diabolo orientation stabilization.

A. Related Works

1) Robot as Entertainment: Entertainment robots have
been widely researched and developed to enrich human life
[1], [2], [3], and also entertainment robots have significant
effects as therapy for elderly people or children with autism
[4], [5], [6]. From the point of view of the research, dancing
humanoid robots [7], [8], puppet humanoid robots [9] and
juggling robots [10], [11], [12], [13] were developed. In
[14], not only the detailed robot but also the platform
to create robot motion for entertainment was developed.
Involving some audience, there were also some discussions
and researches about the robot theater [15], [16], [17].

From the point of view of the commercial business, the
dog-shaped robot AIBO [18] and the seal-shaped robot
PARO [19] were developed, and nowadays sold for entertain-
ment. Recently a lot of other dog-shaped quadruped robots
which can do not only just walking or running but also
dynamic motion like backflip or jump have been developed
[20], [21], [22]. It is expected that robots for entertainment
will be developed more widely as technology advances, and
this study becomes one of those applications.

2) Juggling Manipulation: Influenced by various re-
searches about dexterous and dynamic manipulation, jug-
gling manipulation have been researched steadily. In [10],
the robotic hand realized feedback stabilization control of
a rolling manipulation system called the disk-on-disk. In
[11], the humanoid robot realized catching and throwing the
ball, and finally realized ball juggling with people. In [12],
the robotic arms realized devil-sticking manipulation with
mechanical aid. In [13], the robotic hand realized a control
of periodic up-and-down yo-yo motion.

In most of these studies, they used specialized robots
or robotic hands for specific juggling manipulation, but it
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is better to use not the specialized robots but the general
purpose robots which can do various tasks like human.
Also these manipulation were almost realized by modelling
its dynamics physically, which means these studies don’t
support unknown-dynamics juggling manipulation. Few stud-
ies, which tackled unknown-dynamics juggling manipulation,
assumed linear approximation of unknown dynamics and
lacked a wide range of expression of dynamics. Nowadays
thanks to the development of deep learning, various learning-
based methods and applications with robotic manipulation
were come up all the way from reinforcement learning to
supervised learning or unsupervised learning [23], [24], [25],
[26]. In the filed of juggling manipulation, there are some
studies using reinforcement learning [27]. However most
of these studies using reinforcement learning, even out of
juggling manipulation, were conducted in simulation since
reinforcement learning takes much time to learn the control
policy and that disadvantage doesn’t match to the experiment
of robots in the real environment. In this study, based
on the supervised learning method [25], [28], we propose
the method to realize unstable unknown-dynamics juggling
manipulation by designing a network for such manipulation
and a control law using the network. Also not only realization
of such manipulation but also verification of the applicability
of the method to unstable manipulation and the adaptability
of the method to the unknown environments, which are
missing in the previous studies, are conducted and discussed
in this study.

B. Contributions of This Study

The main contributions of this study are shown as follows.
• Network structure of Diabolo-Manipulation-Net which

represents the predictive model of diabolo manipulation
using a deep neural network

• Calculation process of optimal control using backprop-
agation of Diabolo-Manipulation-Net

• Estimation of diabolo orientation and the experiments
for evaluation and comparison of the proposed Diabolo-
Manipulation-Net Controller to other controllers from
the point of view of the convergence and adaptability

In the following, Section II will explain diabolo manipu-
lation including how we can acquire diabolo manipulation
and how the robot can estimate the diabolo orientation.
Section III will propose a Diabolo-Manipulation-Net Con-
troller based on the representation of the predictive model of
diabolo manipulation. Section IV will explain the results of
experiments showing the effectiveness of proposed Diabolo-
Manipulation-Net Controller compared to other controllers
and also adaptability. Finally the discussion and conclusion
will be explained in Section V and Section VI.

II. DIABOLO MANIPULATION

First of all, we explain diabolo manipulation. Diabolo is
one of juggling manipulation, and the most basic trick is
stabilizing the diabolo orientation. This diabolo manipulation
is also difficult for us human since we have to learn how we
can realize this manipulation, and also the dynamics of this
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(a) Diabolo orientation
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{Robot}.
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(b) Control input for
diabolo
manipulation.

(1)
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(2)

(c) Control input for
diabolo manipulation
seen from above.

Fig. 2. Diabolo state and control input for diabolo orientation stabilization.

manipulation is unstable, which means that without proper
control, the diabolo orientation tilts as time goes by and
finally the rope will get entangled.

A. How To Manipulate Diabolo

For diabolo manipulation, we have to accelerate the dia-
bolo rotation and stabilize the diabolo orientation. To accel-
erate the diabolo rotation, we move right and left sticks up
and down alternately again and again. To stailize the diabolo
orientation, we do some feedback manipulation. Generally
the orientation is defined by roll, pitch and yaw angles. We
define these three angles of the diabolo in the coordinate
system {Robot} fixed to the robot base shown in Fig. 2 (a).
The diabolo roll angle affects not the diabolo orientation but
the diabolo rotation, so we consider only the diabolo pitch
and yaw angles as the diabolo state to stabilize the diabolo
orientation.

The relationship between the control input and the dia-
bolo state is so complex about diabolo manipulation, but
we can realize diabolo orientation stabilization with some
approximation of the relationship. The diabolo pitch angle is
strongly affected by the difference of longitudinal position
of two sticks, and the diabolo yaw angle is strongly affected
by the standing direction against the diabolo. Based on this
simplified relationship, we can realize diabolo orientation
stabilization as follows. When the diabolo pitch angle tilts
forward, we move our right hand forward and our left hand
backward, and when the diabolo pitch angle tilts backward,

X
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XY plane

pitch angle

{Robot}

(a) Estimation of the diabolo
pitch angle.

X

Z

Y
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{Robot}

(b) Estimation of the diabolo
yaw angle.

Fig. 3. Visualization of estimation of the diabolo pitch and yaw angles in
the coordinate system {Robot}.

9175



we move our right hand backward and our left hand forward.
At the same time we adjust the standing direction to stand
just behind the diabolo according to the current diabolo
yaw angle. As the control input of diabolo manipulation,
we define the difference of longitudinal position of two
sticks (Fig. 2(1)) and the angular velocity of the robot base
(Fig. 2(2)) to change the standing direction. The difference
of longitudinal position of two sticks is calculated by sub-
tracting the position of the right stick on the X axis from
the position of the left stick on the X axis in the coordinate
system {Robot}.

However we cannot realize stabilization quite precisely in
this way since complex dynamics of diabolo manipulation
is not fully considered, which means the difference of
longitudinal position of two sticks also affects the diabolo
yaw angle and the standing direction also affects the diabolo
pitch angle. We aim to consider these complex relationship
and calculate optimal control of diabolo manipulation for
more precise diabolo orientation stabilization in this study.

B. Estimation of Diabolo State

We estimate the diabolo pitch and yaw angles using a
depth camera. At first, we get a point cloud from the depth
camera, and we apply HSI color filter to that point cloud
whose parameters are tuned to filter out all except the
diabolo. Now we can get the point cloud of the diabolo. In the
following paragraphs, we will explain the calculation process
of estimating the diabolo pitch and yaw angles respectively
in the coordinate system {Robot} shown in Fig. 3.

For estimating the diabolo pitch angle, first we calculate
two points: one is the point whose value of the coordinate
on the X axis is maximum among the point cloud, and the
other is the point whose value of the coordinate on the X
axis is minimum. These two points are drawn as red points
in Fig. 3 (a). Second we define the virtual plane which is
parallel to the YZ plane and passes through the point whose
value of the coordinate on the X axis is the intermediate value
between those two red points. By dividing the point cloud
of the diabolo with this plane, we can get two point clouds.
Third we calculate the point whose value of the coordinate of
the Z axis is maximum about each two divided point cloud,
which are drawn as blue points in Fig. 3 (a). Finally we
connect those two blue points with one line and the angle
formed by that line and the XY plane is estimated as the
diabolo pitch angle.

For estimating the diabolo yaw angle, first we project the
point cloud of the diabolo to the XY plane, which are drawn
as a black region like a shadow in Fig. 3 (b). Second we apply
linear regression to the projected points. The angle formed
by the line of regression and the XZ plane is estimated as
the diabolo yaw angle.

The diabolo pitch and yaw angles estimated with upper
algorithms are so noisy because of observation variance of
the depth camera. So we apply LPF (Low-Pass Filter) to the

estimated pitch and yaw angles as follows.

xlpf
t =

1

Nlpf

Nlpf−1∑
i=0

xt−i (1)

xt is the diabolo state (the diabolo pitch and yaw angles) at
the timestep t, and xlpf is the diabolo state applied LPF to.
In this study we set Nlpf = 5.

III. DIABOLO-MANIPULATION-NET
CONTROLLER

First we define the problem in this study, and then explain
the calculation process of train, control and adaptation with
Diabolo-Manipulation-Net shown in Fig. 4.

A. Problem Definition

We formulate the problem in this study. We represent the
diabolo state with x whose dimension is Nx and the control
input for diabolo manipulation with u whose dimension
is Nu. The predictive model of diabolo manipulation is
formulated as follows, where f is the predictive model.

x[t−T+1,t] = (xT
t−T+1 xT

t−T+2 ... x
T
t )T (2a)

xt+1 = f(x[t−T+1,t],ut) (2b)

t is the current timestep, and T is how long previous diabolo
state to consider when predicting the diabolo state. For the
dynamic system, the information about acceleration of the
diabolo state is needed, so we set T = 2. In this diabolo
manipulation experiments, we set Nx = 2 (the diabolo pitch
and yaw angles), Nu = 2 (the difference of longitudinal
position of two sticks and the angular velocity of the robot
base).

We represent the predictive model with a neural network
and that network is trained with real data of the diabolo state
x and the control input u. With the trained predictive model,
we calculate the optimal control input as follows.

uopt
t = argmin

ut

J(xref
t+1,x

pred
t+1 ) (3a)

s.t. umin ≤ ut ≤ umax (3b)

xpred
t+1 = f(x[t−T+1,t],ut) (3c)

umax,umin is the maximum and minimum value of u. J is
a cost function for optimizing the control input. xref ,xpred

is the reference and the prediction of x. J must be calculated
to make xpred

t+1 close to xref
t+1, which means the diabolo state

of the next step will get close to the reference diabolo state.
Eq. 3 is calculated every cycle, and the optimized control
input uopt

t is commanded to the robot. We aim to acquire
uopt with some robustness and adaptability.

B. Network Structure of Predictive Model

The predictive model can be represented with any types of
networks. For example, we can use sequence-based networks
such as RNN or LSTM [29] like xt+1 = fsequence(xt,ut).
With that sequence-based network, we can reduce the net-
work size thanks to the sequence-based model. However the
calculation time of optimizing the control input every cycle
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Fig. 4. The Overview of proposed system including Diabolo-Manipulation-Net. Fist we collect the dataset of diabolo manipulation with a simple controller
like Random Controller or P Controller. In the train phase, we train the predictive model shown in the green trapezoid with the collected dataset. In the
control phase, we calculate the optimal control input using backpropagation shown in the blue trapezoid and at the same time adaptation to the current
environment shown in the red trapezoid. The predictive model is shared between optimal control and adaptation.

described in Eq. 3 would increase, which is fatal for real-
time control of the dynamic system. So in this study, we use
a five-fully-connected-layers network to represent the pre-
dictive model. This simple structure has an advantage to the
computational cost compared to sequence-based networks.
The dimension of the input layer is Nx × T +Nu, and the
dimension of the output layer is Nx. The number of hidden
layers are {50, 50, 50}, and we use Sigmoid for an activation
function.

C. Training Predictive Model

In the train phase, in order to calculate the predictive
model, we collect the dataset of x and u whose form
of each data is {x[t−T+1,t],ut,xt+1}. In this study, for
collecting the dataset, we constructed two types of control
laws: Random Controller and P Controller. We formulate
Random Controller as follows.

ut = random(−umin,umax) (4)

random(a, b) is a function which returns a value randomly
from a to b. Also we formulate P Controller as follows
according to the simplified relationship between x and u
discussed in Subsec. II-A.

ut = Kpet (5a)
ut = max(umin,min(umax,ut)) (5b)
Kp = diag(kp1, kp2) (5c)

Kp is a parameter matrix of the controller and kp∗ is
detailed parameters. et is xref

t − xt. The control frequency
of these Random Controller and P Controller is 30Hz which
is the same as the frequency of depth image of Kinect. With
these controllers, We collect the data for 5 minutes. With
those dataset, we train the predictive model by setting the
batch size as Ctrain

batch and the number of epochs as Ctrain
epoch

When training, we use Mean Squared Error for the loss

function, and Adam [30] for the optimization algorithm. In
this study, we set Ctrain

batch = 10, Ctrain
epoch = 100

D. Real-time Optimal Control

We will explain how to calculate the optimal control input
by solving Eq. 3. The optimization problem in Eq. 3 is
nonlinear optimization, and we cannot solve it analytically.
By calculating not ut but ∆ut and update ut again and
again, we can optimize ut recursively as follows.

∆ut = argmin
∆ut∈U

J(xref
t+1,x

pred
t+1 ) (6a)

s.t. umin ≤ ut + ∆ut ≤ umax (6b)

xpred
t+1 = f(x[t−T+1,t],ut + ∆ut) (6c)

ut ← ut + ∆ut (6d)

We conduct this calculation of the optimal control input using
the trained predictive model. Eq. 6a means that minimizing
the cost function J by searching ∆ut within some constraint
U . We describe the detailed process of Eq. 6.

1) Set initial ut of optimization as ut−1

2) Predict the state of next step xpred
t+1 by forwardpropa-

gation
3) Calculate the cost function J
4) Optimize only ut using backpropagation
5) Repeat 2)-4), and command ut to the real robot.

In 1), we expect uopt
t won’t be too far from ut−1 since the

robot cannot realize any u because of the mechanical time
constant. So 1) initialization of optimization is important.
After that initialization, the process of 2)-4) is calculated
repeatedly. In 3), a cost function should be calculated as
follows.

J(xref
t+1,x

pred
t+1 ) =

1

2
‖xref

t+1 − xpred
t+1 ‖2 (7)

In this study, we aim to stabilize the diabolo orientation,
which means the diabolo pitch and yaw angles should be
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zero degree, so xref = (0 0)T In addition, in order to transit
the control input from ut−1 to ut smoothly, we expand the
cost function as follows.

J(xref
t+1,x

pred
t+1 ,ut,ut−1) =

1

2
‖xref

t+1 − xpred
t+1 ‖2

+
1

2
Wsmooth‖ut − ut−1‖2 (8)

In 4), we acquire ∆ut approximately using backpropagation.
We calculate backpropagation of the predictive model with
the loss as a cost function J . Usually we calculate the
derivative of weights W of the network as ∂J

∂W , but in this
phase we calculate the derivative of ut as ∂J

∂ut
and then

calculate ∆ut as follows.

g =
∂J

∂ut
(9a)

∆ut = −ε g

‖g‖
(9b)

g is the gradient of J for ut, and ε is the constant learning
rate for updating ut. By repeating the process of 2)-4) Copt

epoch

times with Copt
batch batch size, finally we can acquire the op-

timal control input uopt
t . We conduct this whole calculation

process of the optimal control input by 30Hz which is the
same as the frequency of depth image of Kinect. In this study,
we set Copt

batch = 10, Copt
epoch = 10, Wsmooth = 0.05.

E. Adaptation to New Environments

In the control phase, at the same time as the optimal
control calculation, we also conduct adaptation of the pre-
dictive model to the current environment every cycle. This
calculation are executed in a different thread from the optimal
control calculation thread. In order to update the predictive
model in real time, we collect the dataset of x and u
whose form of each data is {x[t−T+1,t],ut,xt+1}. We hold
a memory buffer whose size is Cmemory to put some time-
series data in it. When training the predictive model online
for adaptation, we use dataset whose batch size is Cadapt

batch

selected randomly from a memory buffer and train Cadapt
epoch

times. In this study, we set Cmemory = 500, Cadapt
batch = 10,

Cadapt
epoch = 10.

IV. DIABOLO MANIPULATION EXPERIMENTS

First, we will explain the experimental setting. Next we
will formulate P Controller and conduct an experiment of
diabolo orientation stabilization. Then we will deal with
PID Controller in the same way. After that we will conduct
an experiment of diabolo orientation stabilization with our
proposed Diabolo-Manipulation-Net Controller, and verify
its effectiveness including adaptability.

A. Experimental Setting

In this study, a life-sized humanoid robot PR2 will conduct
the experiments. We use a diabolo top and sticks which are
connected with a rope shown in Fig. 1 (a). The weight of
the diabolo is 287 [g]. The length of the rope is 1270 [mm].
These tools for performing a diabolo are designed for human,
and in this study there is no mechanical modification of the

t=0[s] t=5[s] t=10[s] t=15[s]

t=20[s] t=25[s] t=30[s] t=35[s]

Fig. 5. Snapshots of PR2 conducting diabolo orientation stabilization with
Diabolo-Manipulation-Net Controller.

diabolo tools for robots. It is a great advantage for humanoid
robots to use tools designed for human.

In the following, we will calculcate control indices to
measure the convergence of each controller, MSEpitch and
MSEyaw. MSE is a mean square error through time
between the diabolo state and the reference diabolo state,
and we calculate this error about the diabolo pitch and
yaw angles respectively. We evaluate each controller in each
environment five times, and summarize the average of these
control indices in Table I.

B. P Controller

First, we show the diabolo orientation transition in Fig. 6
with P Controller. The detailed formulation of P Controller
is shown in Eq. 5. As for P Controller, MSE is so large and
especially there is stationary deviation about the yaw angle
since P Controller is a very simple controller. So we will
design PID Controller in the following.

C. PID Controller

We formulate PID Controller as follows.

ut = Kpet + Ki

∫
etdt+ Kdėt (10a)

Kp = diag(kp1, kp2) (10b)
Ki = diag(ki1, ki2) (10c)
Kd = diag(kd1, kd2) (10d)

et is xref
t −xt. Kp, Ki and Kd are parameter matrices of

the controller, and kp∗, ki∗ and kd∗ are detailed parameters.
We show the diabolo orientation transition with PID Con-
troller in Fig. 7. We can see that the convergence with PID
Controller is better than that with P Controller, and there is
less stationary deviation about the yaw angle compared to
P Controller. According to Table I, any control indices were
improved compared to P Controller.

D. Diabolo-Manipulation-Net Controller

We implemented Diabolo-Manipulation-Net Controller
and its calculation process of train, control and adaptation
with Chainer [31]. We trained the predictive model from
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Fig. 6. The diabolo orientation transition with P Controller. The red line
is the reference state.
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Fig. 7. The diabolo orientation transition with PID Controller. The red
line is the reference state.
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Fig. 8. The diabolo orientation transition with Diabolo-Manipulation-Net
Controller. The red line is the reference state.

Random Controller and P Controller respectively shown in
Subsec. III-C. The number of trials to collect enough dataset
for training the predictive model to construct Diabolo-
Manipulation-Net Controller was ten for Random Controller
and one for P Controller. We can see that P Controller
is a very simple controller but very useful for training.
We refer to Diabolo-Manipulation-Net Controller trained by
the dataset collected with Random Controller as DMN1
Controller, Diabolo-Manipulation-Net Controller trained by
the dataset collected with P Controller as DMN2 Controller
in Table I. We show the diabolo orientation transition of
DMN2 Controller in Fig. 8 and also snapshots of diabolo
orientation stabilization in Fig. 5. According to Table I, any
control indices with DMN1 Controller or DMN2 Controller
were improved compared to those with P Controller and PID
Controller, and there are almost no difference about control
indices between DMN1 Controller and DMN2 Controller.

TABLE I
CONTROL INDICES OF DIABOLO ORIENTATION STABILIZATION.

P PID DMN1 DMN2

MSEpitch[degree] 24.29 13.87 7.02 9.11
MSEyaw[degree] 33.19 17.24 9.41 9.01

(a) Case1. The weight
of the diabolo decreases.

(b) Case2. The length
of the rope becomes
shorter.

(c) Case3. The CoG
moves backward.

Fig. 9. Various experimental settings.

E. Adaptability of Controllers

We also check the adaptability of controllers by conduct-
ing some experiments in different environments (Case1 -
Case3) by changing experimental settings from the original
environment of Subsec. IV-D. For Case1 we change the
weight of the diabolo from 287 [g] to 243 [g], by just
changing a diabolo top shown in Fig. 9 (a). For Case2 we
change the length of the rope from 1270 [mm] to 1000 [mm]
shown in Fig. 9 (b). For Case3 we change CoG (center
of gravity) 6.25 [mm] backward from original CoG, by
changing a diabolo top at only oneside shown in Fig. 9 (c).
We conduct experiments of upper three settings with PID
Controller and Diabolo-Manipulation-Net Controller before
adaptation, and Diabolo-Manipulation-Net Controller after
adaptation, which is the controller which collected the dataset
in the new environment and updated the predictive model
online enough to realize diabolo orientation stabilization in
the new environment. These two Diabolo-Manipulation-Net
Controller are trained beforehand with the dataset collected
in the original environment. We refer to each controller as
PID Controller, DMN Controller and DMN* Controller, and
summarize the control indices with each controller in Ta-
ble II. Tkeep means how long diabolo orientation stabilization
was kept without failure up to one minute. It is judged
as failure when the rope gets entangled and the diabolo
orientation cannot be stabilized any more. - means no data
because of failure of diabolo orientation stabilization.

According to Table II, PID Controller and DMN Controller
can keep diabolo orientation stabilization only about Case1
and Case2. This is because the dynamics of Case1 and Case2
is not so different from the the dynamics of the original
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Fig. 10. The diabolo orientation transition with Diabolo-Manipulation-
Net Controller in the sixth trial of adaptation to Case3. The red line is the
reference state.

environment, and robustness of each controller absorbed the
dynamics error, so the robot could keep diabolo orientation
stabilization in the new environment without failure. As for
adaptation of DMN* Controller, Case1 and Case2 need only
one trial to adapt to the new environment. Adapting to the
new environment means that updating the predictive model
online again and again until realization of diabolo orientation
stabilization. However Case3 needs six trials to adapt to
the new environment. This is because of a large difference
between the original environment and Case3. At first, DMN*
Controller couldn’t keep diabolo orientation stabilization, but
the predictive model adapted to the new environment through
time by updating weights of the network. We show the
diabolo orientation transition with DMN* Controller in the
sixth trials of adaptation to Case3, which is the final trials,
in Fig. 10. We can see that the error between the diabolo
state and the reference diabolo state gets less through time.

TABLE II
CONTROL INDICES OF DIABOLO ORIENTATION STABILIZATION WITH

VARIOUS EXPERIMENTAL SETTINGS.

PID DMN DMN*
Tkeep[s] 60 60 60

Case1 MSEpitch[degree] 15.2 8.8 11.2
MSEyaw[degree] 17.1 11.1 9.7

Tkeep[s] 60 60 60
Case2 MSEpitch[degree] 21.3 14.8 6.9

MSEyaw[degree] 28.8 17.4 13.5
Tkeep[s] 3.7 4.2 60

Case3 MSEpitch[degree] - - 14.5
MSEyaw[degree] - - 17.0

V. DISCUSSION

Comparing to basic controllers, Diabolo-Manipulation-Net
Controller has the good convergence according to Table I.
The error with Diabolo-Manipulation-Net is about half of
that with PID Controller. This is because the formulation of
Diabolo-Manipulation-Net Controller is not restricted, which
means Diabolo-Manipulation-Net Controller can represent
highly wide types of controllers, though the formulation
of PID Controller is restricted like Eq. 10. This ability
to represent highly wide types of controllers is one of
advantages of Diabolo-Manipulation-Net Controller. Also it
is easy for Diabolo-Manipulation-Net Controller to adapt to
the new environment since all we have to do is collecting

data in the new environment and train the predictive model
online. It is also one of advantages of Diabolo-Manipulation-
Net Controller not to construct a control law directly but to
construct the predictive model.

In this study, we trained the predictive model from P Con-
troller and Random Controller, and checked the convergence
and adaptability. According to the result of Table I, there
are almost no difference of the convergence and adaptability
about which controller to use for training the predictive
model. This is because the predictive model, which we want
to approximate with a neural network, is determined uniquely
based on the laws of physics, unlike a controller or a control
policy which we can represent in various forms. As for the
number of trials to train the predictive model, though it is
imagined easily, Random Controller needs much more trials
than P Controller. Diabolo manipulation is unstable, so it is
very efficient to use some feedback controller even if it is
very simple like P Controller.

Next, we discuss the difficulty of setting parameters
of controllers. As for PID Controller, we have to tune
parameters, and such manual tuning of PID Controler is
hard because of unstable and unknown-dynamics juggling
manipulation. As for Diabolo-Manipulation-Net Controller,
the allowable range of parameters is not so severe as PID
Controller, since the parameters we have to set such as the
network structure are not related to the controller directly
and the parameters related to the controller directly such
as the weight of the network are tuned automatically and
empirically. As for tuning parameters in different environ-
ments, Diabolo-Manipulation-Net Controller can adapt au-
tomatically and empirically by collecting data and updating
the network online although P Controller and PID Controller
has to be tuned manually again.

Finally, we discuss the applicability to other control tasks.
The basic idea of the calculation process of the optimal
control and the adaptation to other environments is a general
method, so this calculation process can be applied to other
control problems. In addition, by extending the network to
predict the much later state, we can get the learning-based
controller which is similar to the model predictive controller.

VI. CONCLUSIONS

In this study, we proposed Diabolo-Manipulation-Net Con-
troller and the calculation process to train that network,
acquire the optimal control input for such manipulation
and adapt to the new environments. Diabolo-Manipulation-
Net is the predictive model of that diabolo manipulation,
and we can calculate the control input by backpropagating
the difference between the predicted diabolo state and the
reference diabolo state. With some experiments of diabolo
orientation stabilization, we verified the effectiveness of
Diabolo-Manipulation-Net Controller, which is good at both
convergence and adaptability to the different environments
without hard tuning compared to basic controllers like PID
Controller. We also verified its robustness to a certain extent
though there is no structure in the network for robustness,
which is one of future works.
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