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Abstract— To fuse information from a 3D Light Detection
and Ranging (LiDAR) sensor and a camera, the extrinsic trans-
formation between the sensor coordinate systems needs to be
known. Therefore, an extrinsic calibration must be performed,
which is usually based on features extracted from sensor
data. Naturally, sensor errors can affect the feature extraction
process, and thus distort the calibration result. Unlike previous
works, which do not consider the uncertainties of the sensors,
we propose a set-membership approach that takes all sensor
errors into account. Since the actual error distribution of off-
the-shelf sensors is often unknown, we assume to only know
bounds (or intervals) enclosing the sensor errors and accord-
ingly introduce novel error models for both sensors. Next, we
introduce interval-based approaches to extract corresponding
features from images and point clouds. Due to the unknown
but bounded sensor errors, we cannot determine the features
exactly, but compute intervals guaranteed to enclose them.
Subsequently, these feature intervals enable us to formulate
a Constraint Satisfaction Problem (CSP). Finally, the CSP is
solved to find a set of solutions that is guaranteed to contain
the true solution and simultaneously reflects the accuracy of the
calibration. Experiments using simulated and real data validate
our approach and show its advantages over existing methods.

I. INTRODUCTION

Two sensors commonly employed in mobile robotics are

RGB cameras and 3D LiDARs (or laser scanner). While

the camera is well suited to reidentify distinct features over

time and space, the distance to those features cannot be

determined from single images. In contrast, the LiDAR

provides distance information, but does not allow to easily

reidentify the same object. Consequently, it is beneficial to

fuse information from these two complementary sensors.

Often, distinct features of a checkerboard are extracted

from the data of both sensors and subsequently employed

to compute the 6-DOF (Degrees Of Freedom) extrinsic

calibration. The checkerboard is particularly useful as a

calibration target since it is also required for the intrinsic

calibration of a camera. However, these distinct features

cannot be determined without error due to the measurement

uncertainties of both sensors. Nevertheless, most existing

approaches do not take possible errors of the LiDAR and

the camera into account.

The disregard of sensor errors generates two problems.

First, a zero mean error is implicitly assumed, which means

that the sensor measurements should approximate the true

value on average. However, this assumption is often invalid

due to, for example, the distance measurement of the LiDAR
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Fig. 1: Overview of our approach. To find the extrinsic

transformation, i.e. the rotation matrix RC
L and the translation

vector tCL , between camera and LiDAR in a guaranteed

way we find plane, line and point features in both camera

and LiDAR data under interval uncertainty.

depending on the incidence angle and the reflectivity of the

surface [1], [2], or an incorrect intrinsic calibration of the

camera or the LiDAR. Consequently, it may happen that the

distance measurements of the scan points residing on the

calibration target are biased (i.e. they exhibit a systematic

error), and thus the extracted features are inevitably incorrect.

Second, the accuracy of the extracted features cannot be

assessed, and therefore cannot be employed to adequately

weight the features during the computation of the extrinsic

transformation parameters. In addition, the final calibration

accuracy cannot be determined, thus leaving it unknown to

the user whether the achieved accuracy is sufficient.

To overcome these drawbacks, we first introduce novel

bounded-error sensor models that are compliant with nonzero

mean errors (cf. Section IV). For example, as indicated in

Fig. 1, we no longer assume to know which exact point

is actually measured by the LiDAR, but only assume to

know boxes (or interval vectors) that enclose the actually

measured points (i.e. the red scan boxes). The size of these

scan boxes is directly related to the distance uncertainty of

the measurements and the divergence of the laser beams.

Subsequent computations using intervals require a dedicated

arithmetic, which is also known as interval analysis [3] and

which constitutes a special case of computations on sets.

Section III introduces basics and explains the choice of this

error modeling technique over traditional stochastic methods.

Using the scan boxes, we determine the plane normal

vector, the line direction vectors of the boundaries and the
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four corner points of the checkerboard (cf. Section VI). Since

we use an interval-based approach, the extracted features are

unknown but bounded (i.e. intervals). For example, instead

of computing the exact corner points, we are able to find

corner boxes that are guaranteed to enclose the true corner

points. To establish a connection between the checkerboard

and the camera, we have to solve the Perspective-n-Point

(PnP) problem, which is the problem of finding the pose of

the camera relative to a coordinate system established for the

checkerboard, under interval uncertainty. Using the resulting

intervals enclosing the pose of the camera, we compute

intervals enclosing the same features as for the LiDAR.

Afterwards, we employ the corresponding feature intervals

extracted from camera and LiDAR data to formulate a CSP

that constrains the extrinsic transformation and for which

constraint propagation methods can be used to compute the

solution (cf. Section VII). Finally, an evaluation of the new

extrinsic calibration approach using simulated as well as

real data shows its applicability and its advantages over

established methods (cf. Section VIII).

II. RELATED WORK

Existing approaches to find the relative transformation be-

tween camera and LiDAR can be divided into two categories:

target-less or target-based. Target-less approaches do not

depend on a dedicated calibration target and are particularly

useful to compute the extrinsic transformation during the

operation of the robot [4]. However, these approaches are

generally less accurate or require manual operation by the

user. Moreover, the transformation is static, and thus it

suffices to perform the calibration once before operation.

Target-based approaches differ in the calibration target

and the features they identify on it. While there exist some

approaches employing spheres [5] or even more specialized

calibration targets such as a polygonal planar board [1], most

approaches rely on a checkerboard due to its availability and

further usability for intrinsic camera calibration.

Unnikrishnan and Hebert proposed the first approach for

the extrinsic calibration of a 3D LiDAR and a camera

using a checkerboard [6]. They find the plane parameters

of the checkerboard and subsequently minimize the distance

of laser scan points to this plane. Their approach requires

several checkerboard poses to constrain all transformation

parameters. Thus, Zhou et al. do not only use the plane

parameters of the checkerboard, but also identify the bound-

aries [7]. This allows them to compute the full extrinsic

transformation from a single checkerboard pose.

All presented approaches disregard the sensor uncertain-

ties and thus experience the problems previously mentioned.

In contrast, Zhou and Deng introduce the only calibration

approach that takes the uncertainty of the plane parameters

into account [8]. However, they only employ the uncer-

tainty to weight the different checkerboard poses during

the optimization and do not propagate it to the final result.

Consequently, none of the presented approaches are able to

directly assess the accuracy of the computed extrinsic trans-

formation. Instead, they employ ground truth information

to compute the calibration error for specific test cases that

cannot serve as a general statement for different sensors and

calibration environments. Furthermore, as mentioned above,

due to the zero mean error assumption, systematic errors

of, for example, the distance measurements of the LiDAR,

cannot be taken into account.

While the approach of Zhou et al. [7] produces the most

accurate results, it is also the most error-prone because of

the difficulty in identifying the checkerboard boundaries in a

point cloud. Naturally, the resolution of the LiDAR limits the

accuracy with which the boundaries can be determined. In

addition, scan points close to the boundary often have large

noise. Therefore and due to the reasons mentioned above, we

introduce a novel approach that takes all these uncertainties

of the feature extraction into account and propagates them

to the result. To be able to deal with nonzero mean errors

and unknown error distributions, we use interval analysis.

III. INTERVAL ANALYSIS

Intuitively, we as humans would claim that we can mea-

sure a distance with an accuracy of, for example, ±1 cm. This

is the idea of interval analysis [3]. Rather than specifying an

exact value or a stochastic distribution, it is assumed that

measurements can be bounded using a lower and an upper

bound, x and x respectively. However, no statement can be

made about which value within the interval [x] = [x, x] is

most likely. We only assume that the true measurement value

x∗ is enclosed in the interval: x∗ ∈ [x]. Formally defined, an

interval is the set of all real numbers between its lower and

upper bounds. Consequently, the uncertainty of an interval is

its radius r([x]) = (x − x)/2. Furthermore, an interval box

[x] is defined as a vector of intervals.

The main idea of interval analysis is to extend the classical

real arithmetic operators to set theory. We give an example

for the addition of two intervals:

[−3, 1] + [4, 7] = [−3 + 4, 1 + 7] = [1, 8]. (1)

As can be seen, the computation takes the worst case (i.e. all

possible combinations of values from both intervals) into

account. As this is the case for all operations, the results

of interval-based approaches are guaranteed to enclose the

true solution if the initially assumed bounds are correct.

However, to determine the most likely point-valued solution

in the interval, a combination with stochastic approaches is

required in the future.

Often, we require to characterize the set

X = {x ∈ R
n | f(x) ∈ Y } = f

−1(Y), (2)

where f : R
n → R

m is a possibly nonlinear function

and Y is a subset of R
m. For example, X could be the

desired set describing the position of a robot, f could be a

measurement function and Y the measurement. To compute

X, the branch and bound algorithm Set Inversion Via Interval

Analysis (SIVIA) can be employed [3].

The same problem can also be formulated as a CSP, where

f is understood as a function that constrains the variables x.

In this context, so-called contractors [9] can be employed,
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which, starting from an initially arbitrary search space, use

interval computations to remove inconsistent parts of the

search space. Since no branching (i.e. bisections of the initial

search space) is required, the solution set is computed more

efficiently, but can be more pessimistic compared to using

SIVIA. The classical contractor is the forward-backward

contractor that decomposes all constraints into primitive

constraints and considers them in isolation [3].

Finally, we want to summarize the advantages of interval-

based over stochastic error modeling for our application:

• The true error distribution, which is generally unknown

for off-the-shelf sensors, is not required.

• In particular, unknown systematic (i.e. nonzero mean)

errors are compatible with interval analysis.

• Given correct sensor error bounds, all subsequent results

are guaranteed to be correct. In the case of errors, the

fault can be traced back to incorrect bounds.

Furthermore, no local minima can appear, and thus no initial

values are required. Besides, the nonlinear functions do not

need to be linearized, and thus no linearization errors occur.

IV. SENSOR ERROR MODELS

We assume unknown but bounded errors for both sensors.

The error model for the camera was first introduced in our

most recent paper [10], while the 3D LiDAR error model is

an extension of an existing 2D model [11].

A. Camera Model

We employ the approach that is included in the OpenCV

library [12] for the detection of checkerboard corners in

camera images. Thus, the raw measurements we use are

pixel points in the image. Afterwards, the pinhole camera

model [13] is applied to find 3D vectors pointing in the

direction of the checkerboard corners.

However, the corners cannot be detected perfectly for

various reasons. First, the camera has a limited resolution,

and thus the analog signal (i.e. the actual scene) has to

be discretized into pixels. Second, image blur occurring,

for example, due to the object not being in proper focus

hampers the corner detection algorithm. Third, each image

sensor is subject to noise corrupting the individual color

channels of each image pixel, thus again leading to errors

during the corner detection. We choose an interval-based

over a stochastic error model since the discretization results

in natural bounds. Moreover, the error distribution of the

two remaining error sources is generally unknown [14] and

depends on various circumstances (e.g. the environment), but

can be bounded [15]. Fig. 2 shows the idea. Besides, the

intrinsic parameters, which are required to apply the pinhole

camera model, cannot be determined perfectly but can be

assumed to be static. Thus, any error is systematic, and

consequently the interval-based error model is preferable.

In practice, we empirically determine an interval [∆px]
that encompasses all different error sources and results in an

interval box that can be seen in Fig. 2. Since the interval

should consider the worst case, we choose the maximum

reprojection error occurring during the intrinsic calibration.

Fig. 2: Exemplary image of a checkerboard for which the

corner features (green dot) have to be detected. However,

various error sources lead to an inaccurate detection (red

dot). Thus, we apply our bounded-error model which results

in the blue interval box that encloses the true feature.

B. LiDAR Model

The raw measurements of a 3D LiDAR are the radial

distance r, the polar (vertical) angle θ and the azimuthal

(horizontal) angle ϕ. To obtain the 3D point corresponding

to this measurement, these spherical coordinates can be

transformed into Cartesian coordinates.

As explained previously, the distance measurement is often

biased due to the incidence angle between the laser beam

and the surface [1], [2], and the environment of the sensor

(temperature, humidity, etc.) [16]. Since this systematic error

cannot be predicted without additional information about

the environment, it cannot be modeled using an established

stochastic error model. However, using information from

the manufacturer, the error can be bounded. Similarly, the

LiDAR does not emit a perfect but a diverging beam, and

thus measures a small surface instead of a point. Since the

power distribution inside the beam is generally unknown, the

actual location of the measured point is uncertain and could

be anywhere within the beam footprint [17]. Consequently,

an interval-based model is again preferable to consider this

uncertainty. Fig. 3 shows the idea.
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Fig. 3: Visualization of the 3D box [P] resulting from the

unknown but bounded errors for the spherical coordinates

r, θ and ϕ. This box is guaranteed to enclose the actually

measured point P∗, which is different from the point P

corresponding to the raw measurement.

9014



V. PROBLEM DEFINITION AND NOTATIONS

The extrinsic calibration is the problem of determining the

transformation from the LiDAR coordinate system L into the

camera coordinate system C. This transformation consists

of the rotation matrix RC
L ∈ SO(3) and the translation

vector tCL . To find this transformation, we identify features

on a checkerboard as shown in Fig. 1. Here, we assume the

sensor clocks to be synchronized [18]. Different poses of the

checkerboard help to constrain the transformation further.

Thus, the following procedure, which focuses on a single

pose of the checkerboard, can be repeated several times.

The LiDAR points on the checkerboard are denoted as PL
l ,

with l ∈ {1, . . . , Np}. Np is the number of scan points on the

plane. The first feature we identify are the plane parameters

consisting of the plane normal vector, denoted as nL and

nC , and the distance to the plane, denoted as dL and dC .

These parameters are linked by the general plane equation

nA ·PA + dA = 0. (3)

The superscript A ∈ {C,L} indicates the sensor coordinate

system. Next, we identify the boundary lines i ∈ {1, . . . , 4}
of the checkerboard. The line direction vectors are denoted

as d
L
i and d

C
i . Corresponding points on the line are denoted

as QL
ij and QC

ik with j ∈ {1, . . . , Ni} and k ∈ {1, 2}. Ni is

the total number of points on the line i which we extract from

LiDAR data. In contrast, we determine only two points on

every line i for the camera - namely the two adjacent corner

points. These corner points are the third feature we identify

and are also denoted as CL
m and CC

m with m ∈ {1, . . . , 4}.

VI. CHECKERBOARD FEATURE EXTRACTION

This section details our approach to extract the checker-

board features depicted in Fig. 1 under interval uncertainty.

A. Camera Feature Extraction

First, we solve the PnP problem under interval uncertainty

as detailed in [10]. Here, we assume an unknown but

bounded error for the detections of the checkerboard pattern

in the image (cf. Fig. 2) and the 3D world coordinates of

these corners of the checkerboard pattern: [∆W ]. This results

in domains for the pose of the camera in the checkerboard

coordinate system W : [RC
W ] and [tCW ].

1) Plane feature extraction: The checkerboard coordinate

system W is defined such that the plane intersects the origin

and nW = ( 0 0 1 )⊺ is the normal vector of the plane. Thus,

the plane normal vector in the camera coordinate system is

[nC ] := [R3], where R3 is the third column of RC
W . Next,

we know that tCW can also be interpreted as a point PC

on the checkerboard. Substituting tCW into (3) allows us to

compute [dC ] := −([nC ] · [tCW ]).
2) Point feature extraction: Taking advantage of the

known checkerboard dimensions, we are able to immediately

determine the four corner points CW
m , m ∈ {1, . . . , 4}, in

the checkerboard coordinate system W . Since the checker-

board cannot be manufactured perfectly, we again assume a

bounded error: [CW
m ] = CW

m + [∆W ]. Subsequently, using

[RC
W ] and [tCW ] they are transformed into C.

3) Line feature extraction: To compute an arbitrarily

scaled line direction interval vector [d̂
W

i ] in W , we subtract

two adjacent corner points for which we assume the same

uncertainties as before. Subsequently, we normalize this

vector to obtain a unit vector and transform it into C.

B. LiDAR Feature Extraction

Identifying the same features in point clouds is more

difficult since the transformation between W and L cannot

be calculated as conveniently. First, we detect all scan boxes

[PL
l ], l ∈ {1, . . . , Np} on the checkerboard. We perform the

calibration in a laboratory, and can thus assume no objects to

be close to the checkerboard. Still, outliers (e.g. scan points

on the tripod holding the checkerboard) can occur and will

be considered as detailed in the following.

1) Plane feature extraction: We use (3) to formulate a

CSP for the plane normal vector. Besides, we introduce a

constraint to restrict the normal vector to a unit vector:

P :































Variables: nL, dL, PL
l

Constraints:

1. nL ·PL
l + dL = 0 ∀l ∈ {1, . . . , Np}

2.
∥

∥nL
∥

∥

2
= 1

Domains: [nL], [dL], [PL
l ]

The domains are initialized with [nL] = ([−1, 1]×3)
⊺ and

[dL] = [0,∞]. In words, we consider the normal vector to

be unknown, but restrict dL ≥ 0 to remove the ambiguity

of positive/negative unit vectors. To solve the CSP, we use a

forward-backward contractor and SIVIA.

To account for outliers, we employ a relaxed intersec-

tion [19]. This means that not all scan boxes [PL
l ] have to

meet the first constraint, but that a given number of points are

potential outliers. Afterwards, we detect and remove definite

outliers by checking for every point whether the constraints

of P uphold with the computed domains [nL] and [dL].
2) Line feature extraction: To determine the checkerboard

boundaries, we compute so-called hypothetical laser rays

originating from the LiDAR and passing through the border

of the checkerboard. In order to do that, we iterate over

each scan line (cf. Fig. 1). Such scan lines are typical for

3D LiDARs that achieve 3D vision by combining several

line scanners (e.g. Velodyne VLP-16). In each scan line,

we detect adjacent scan boxes of which one does not lie

on the checkerboard but in the background and one lies on

the checkerboard. Thus, we can conclude that the border

of the checkerboard must be in between these two adjacent

scan boxes, which allows us to determine an interval for the

horizontal opening angle of the hypothetical laser ray. Fig. 4

shows a scan line in top view and visualizes our idea. Since

a scan line is defined as the set of points having the same

vertical opening angle, an interval for the vertical opening

angle of the hypothetical laser ray is directly given.

Subsequently, the hypothetical laser rays of each scan line

are intersected with the checkerboard plane to find boxes

enclosing the boundary points [QL
ij ]. Moreover, multiple

hypothetical rays of the same boundary span a plane, which
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Fig. 4: Visualization of the idea to find intervals that enclose

the horizontal angle of the hypothetical laser rays.

LiDAR
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2
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[dL
3
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[dL

4
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Checkerboard
plane
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the hypothetical
laser rays

Fig. 5: The hypothetical laser rays are split into sets such that

each set corresponds to one boundary of the checkerboard.

A ray that could belong to multiple sets is omitted (e.g. in

the bottom left). Then, the plane spanned by a set of rays is

intersected with the checkerboard plane to find the boundary.

is intersected with the checkerboard plane to find an interval

enclosing the unit direction vector [dL
i ] of the boundary

line. Fig. 5 shows the idea. Naturally, if the scan lines are

more or less parallel to the boundaries of the checkerboard,

we cannot detect boundary points on each boundary of the

checkerboard. In this case, we are not able to determine all

four direction vectors.

3) Point feature extraction: The corner points CL
m of

the checkerboard can be computed by performing a line

intersection in 3D. Let [dL
i ] and [dL

j ] be two intersecting

line direction vectors (i.e. their cross product must not be 0).

Accordingly, [QL
ik] and [QL

jp] are boxes enclosing points on

the respective lines. This allows us to formulate the CSP:

L :



















Variables: CL
m, rik, rjp,d

L
i ,d

L
j ,Q

L
ik,Q

L
jp

Constraints:

1. CL
m = rikd

L
i +QL

ik = rjpd
L
j +QL

jp

Domains: [CL
m], [rik], [rjp], [d

L
i ], [d

L
j ], [Q

L
ik], [Q

L
jp]

To compute the box [CL
m], we have to find rik and rjp,

which are unknown constants, and thus we set their initial

domains to [rik] = [rjp] = [−∞,∞]. Afterwards, we employ

a forward-backward contractor and SIVIA to solve the CSP.

To find the tightest possible box enclosing CL
m, we for-

mulate the CSP L for every combination of points QL
ik and

QL
jp (i.e. ∀k ∈ {1, . . . , Ni}, ∀p ∈ {1, . . . , Nj}) and intersect

the resulting intervals for CL
m. Generally, we determine all

four corner points (i.e. m = {1, . . . , 4}) of the checkerboard.

However, if not all boundaries can be detected, not all corner

points can be computed.

VII. RESULTING CONSTRAINT SATISFACTION

PROBLEM

Subsequently, we are able to formulate the CSP C which

imposes constraints on the desired rotation matrix RC
L and

the translation vector tCL :

C :







































































































Variables:
RC

L , t
C
L ,n

L,nC ,dL
i ,d

C
i ,

QL
ij ,Q

C
ik,P

L
l , d

C ,CL
m,C

C
m

Constraints:

∀i ∈ {1, . . . , 4}, ∀j ∈ {1, . . . , Ni}, ∀k ∈ {1, 2},

∀l ∈ {1, . . . , Np}, ∀m ∈ {1, . . . , 4} :

1. RC
Ln

L = nC

2. RC
Ld

L
i = d

C
i

3.
(

I− d
C
i

(

d
C
i

)⊺)(

RC
LQ

L
ij + tCL −QC

ik

)

= 0

4. nC ·
(

RC
LP

L
l + tCL

)

+ dC = 0

5. RC
LC

L
m + tCL = CC

m

Domains:
[RC

L ], [t
C
L ], [n

L], [nC ], [dL
i ], [d

C
i ],

[QL
ij ], [Q

C
ik], [P

L
l ], [d

C ], [CL
m], [CC

m]

The first two constraints establish a connection between

unit direction vectors, and thus only involve the rotation

matrix. The third constraint forces a boundary point QL
ij ,

which is transformed into C, to also lie on the boundary line

as computed in C. The fourth constraint ensures that all scan

points lying on the checkerboard fulfill the plane equation af-

ter being transformed into C. Lastly, the fifth constraint states

that a corner point CL
m, which is transformed into C, should

coincide with the corresponding corner point computed from

image data. To reduce the number of unknowns in the CSP C
to six, we express the rotation matrix using three Euler angles

ξCL = (ϕC
L θCL ψC

L )⊺ defined in the ZYX convention.

The domains [ξCL ] and [tCL ] are initialized to either an ini-

tial estimate of the transformation or to [ξCL ] = ([−π, π]×3)
⊺

and [tCL ] = ([−∞,∞]×3)
⊺. In the second case, we assume

no initial information. Subsequently, we build a forward-

backward contractor for every constraint of the CSP C and

intersect them to contract the parameter domains.

Different checkerboard poses provide varying constraints

on each transformation parameter. Thus, we repeat the fea-

ture extraction procedure for data from several checkerboard

poses and combine all resulting constraints in one common

CSP. Generally, we strive to contract the transformation

parameter domains as much as possible while using as few
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checkerboard poses as needed, to limit the computational

load. In this context, Zhou et al. [7] prove that rotating the

checkerboard as close as possible to the sensors is sufficient

and a movement of the checkerboard is not necessary.

VIII. EXPERIMENTS AND DISCUSSION

We evaluate our method using both simulated data gen-

erated using Gazebo [20] and real data. In addition, we

compare our approach to the state-of-the-art algorithm of

Zhou et al. [7]. However, a direct comparison is inappropriate

because the objective of their approach is to find the best

point-valued result, while our approach aims to enclose the

true solution and simultaneously indicate the uncertainty

of the computation. To depict this uncertainty, we state

the radius of the intervals. Besides, we define the camera

coordinate system C, which is the reference coordinate

system for our results, as follows. The z-axis is pointing

in the viewing direction, the x-axis is pointing to the right

and the y-axis is pointing down.

A. Simulated Data

For our simulation environment, we place the checker-

board, which has a size of 100× 76 cm, in a distance of

roughly 2.5m from the multi-sensor system. The pixel error

of the simulated camera follows a Gaussian distribution with

a mean value of 0 and a standard deviation of 0.01. This

results in a maximum corner detection error of 0.3 px during

camera calibration, and thus we set [∆px] = [−0.3, 0.3] px.

The simulated LiDAR is a replication of the Velodyne VLP-

16. The error of the spherical coordinates follows a uniform

distribution without any outliers. The bounds of these uni-

form distribution are [∆r] = [−3, 3] cm and [∆θ] = [∆ϕ] =
[−0.03, 0.03]◦. Furthermore, we set the following extrinsic

transformation parameters to approximately replicate our real

setup: φCL
∗

= 90◦, θCL
∗

= 0◦, ψC
L

∗

= 0◦, xt
C
L = −27 cm,

yt
C
L = 15 cm, zt

C
L = −12 cm.

At first, we show results for the transformation parameters

that are computed from one checkerboard pose only. We

select six different checkerboard poses, which are depicted

in Fig. 6, to show the influences on different extrinsic

calibration parameters. Furthermore, the initial domains for

the rotation are set to [θCL ] = [−90, 90]◦ and [φCL ] = [ψC
L ] =

[−180, 180]◦. Besides, we set [wt
C
L ] = wt

C
L + [−50, 50] cm

for w ∈ {x, y, z}. Thus, we assume no initial information

about the extrinsic transformation other than a rough idea of

the setup of the multi-sensor system.

For all six poses, our method encloses the true transforma-

tion parameters. However, the accuracy of the transformation

parameters, which is depicted in Table I, varies. This can be

explained by the corresponding pose of the checkerboard.

For example, the first and fifth pose allow to accurately

contract the translation along the z-axis. The reason is that

the checkerboard plane is perpendicular to the z-axis for

these poses, and thus the fourth constraint of the CSP C,

which forces scan points to lie on the checkerboard plane,

is particularly suited to allow strong contractions in z-

direction. In contrast, the first three (the fourth) poses of

(a) Pose 1. (b) Pose 2. (c) Pose 3.

(d) Pose 4. (e) Pose 5. (f) Pose 6.

Fig. 6: Simulated images of six different checkerboard poses.

TABLE I: Interval radii for the poses in Fig. 6.

Pose
r([φCL ]) r([θCL ]) r([ψC

L ]) r([xt
C
L ]) r([yt

C
L ]) r([zt

C
L ])

(◦) (◦) (◦) (cm) (cm) (cm)

1 0.7 0.6 0.7 2.7 50.0 1.6
2 1.2 0.5 0.8 2.8 50.0 2.0
3 0.8 0.9 0.5 4.6 50.0 1.9
4 0.4 0.6 0.7 3.2 32.2 50.0
5 1.1 1.1 0.2 5.7 5.8 1.5
6 0.8 1.0 1.2 5.4 3.7 2.4
all 0.4 0.5 0.2 2.4 2.3 1.1

the checkerboard do not allow to contract the translation

along the y-axis (z-axis) since no features can be extracted

to constrain the corresponding translation parameters. This

is because the scan lines are parallel to the top and bottom

boundaries of the checkerboard. Similar reasons can be found

for all results by linking the corresponding checkerboard

pose to the CSP C.

In addition, Table I shows the result for the combination of

the constraints from all six poses. As expected, the computed

intervals resemble the best possible results of employing the

different poses individually. However, some domains (e.g. the

translation parameters) can be determined even more accu-

rately. This can be explained by the fact that the combined

constraints supplement each other. Thus, this experiment

shows a textbook example of how different contractors can

be combined to produce an even more powerful contractor.

TABLE II: Influence of different simulated error bounds.

r([φCL ]) r([θCL ]) r([ψC
L ]) r([xt

C
L ]) r([yt

C
L ]) r([zt

C
L ])

(◦) (◦) (◦) (cm) (cm) (cm)

reference 0.35 0.46 0.24 2.36 2.26 1.12

r([∆px]) (px)
0.4 0.38 0.47 0.26 2.42 2.45 1.35
0.5 0.41 0.48 0.27 2.51 2.62 1.50
0.6 0.41 0.53 0.28 2.73 2.65 1.60

r([∆r]) (cm)
6.0 0.38 0.55 0.36 2.76 2.37 1.15

r([∆θ]) (◦)
0.06 0.41 0.51 0.34 2.61 2.60 1.13

r([∆ϕ]) (◦)
0.06 0.36 0.49 0.41 2.60 2.44 1.13
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TABLE III: Results showing the influence of biased distance measurements on both our and the state-of-the-art approach.

φCL (◦) θCL (◦) ψC
L (◦) xt

C
L (cm) yt

C
L (cm) zt

C
L (cm)

True 90.0 0.0 0.0 −27.0 15.0 −12.0
[7], no bias 90.0 0.0 0.0 −27.0 15.0 −11.9
Our, no bias [89.6, 90.3] [−0.4, 0.3] [−0.1, 0.3] [−28.8,−25.0] [13.1, 16.7] [−13.1,−11.0]
[7], bias 90.0 0.0 0.0 −27.1 14.9 −13.0
Our, bias [89.7, 90.3] [−0.4, 0.5] [−0.4, 0.3] [−29.5,−25.0] [13.0, 16.8] [−13.1,−10.9]

Finally, Table II shows results for different simulated

errors for both camera and laser scanner. Naturally, the

sensor error bounds are adjusted accordingly. For exam-

ple, the second row shows the interval radii for [∆px] =
[−0.4, 0.4] px while the other sensor error bounds are kept

as detailed above. As a reference, the first line shows the

results for the error bounds introduced and evaluated above.

Increasing the error results in wider intervals reflecting the

increasing uncertainty. However, the uncertainty does not

increase significantly. Thus, we can state that our approach

can handle different errors for both camera and laser scan

data without drastically increasing the uncertainty. Of course,

this only applies if the error bounds are known and are

neither over- nor underestimated.

1) Comparison to state-of-the-art approach: We depict

exemplary results of the approach of Zhou et al. [7] for the

fifth checkerboard pose: φCL = 89.6◦, θCL = −1.4◦, ψC
L =

0.0◦, xt
C
L = −20.4 cm, yt

C
L = 13.1 cm, zt

C
L = −11.6 cm.

While the translation along the x-axis is off by 6.6 cm, the

translation along the z-axis is off by only 0.4 cm and the yaw

angle is computed correctly. As can be seen from Table I, this

complies with the accuracies we achieve. Our results show

that the yaw angle and the translation along the z-axis can be

computed most accurately. However, Zhou’s approach does

not allow these accuracies to be assessed solely on the basis

of sensor data, and therefore the user cannot judge whether

the extrinsic calibration is sufficiently accurate.

Next, we show the influence of systematic errors on

both our and the established approach. We use a total

of 27 checkerboard poses, including the six poses shown

above, which are evenly distributed in the rotation space

around the sensor setup. Originally, the error of the distance

measurements of the LiDAR follows a uniform distribution

in the interval [−0.03, 0.03]m, and thus does not violate

the zero-mean assumption of the state-of-the-art approach.

The results for both approaches are depicted in the second

and third row of Table III. The state-of-the-art approach per-

forms reasonably well and is able to accurately estimate the

transformation parameters. Furthermore, our own approach

exhibits the same characteristics as before. Subsequently,

we add a bias to the distance measurement such that the

mean distance error is 1 cm, but the error is still bounded

in the interval [−0.03, 0.03]m. The fourth and fifth row of

Table III show the results. The approach of Zhou et al. is

significantly influenced by the systematic error. As expected,

the translation along the z-axis is off by approximately 1 cm,

as this is the forward facing axis, which is thus most affected

by a distance error of the LiDAR. In contrast, our approach is

not disturbed by systematic errors and the results are similar

to the results for the unbiased data.

Although our experiment here might look staged, it is

important to point out that such systematic errors can occur

in reality due to, for example, the incidence angle of the laser

beam or the surface of the measured calibration target. As

shown, the stochastic approach cannot deal with such un-

known systematic errors as the zero-mean error assumption

is inherent and cannot be violated. Moreover, it is important

to note that the width of the error distribution is not the

deciding factor here as the stochastic approach performs well

if the distance error is uniformly distributed in the same

interval. In contrast, our interval-based approach can cope

with unknown systematic errors as long as they are enclosed

by the corresponding interval bounds. This also holds true

for systematic errors that are larger than 1 cm.

B. Real Data

Our setup that consists of a Velodyne VLP-16 LiDAR,

a FLIR Grasshopper3 camera, and a 100× 76 cm checker-

board can be seen in Fig. 7. The camera has a resolution of

1920× 1200 px. The LiDAR has a vertical angular resolu-

tion of 2◦. Besides, the rotation rate of the LiDAR is set to

5Hz, resulting in a horizontal angular resolution of 0.1◦.

The uncertainties of the LiDAR are specified by the

manufacturer as [∆r] = [−3, 3] cm, [∆ϕ] = [−1.5, 1.5]mrad
and [∆θ] = [−0.75, 0.75]mrad. Furthermore, we set an

empirically determined maximum outlier percentage for the

computation of the plane parameters of 0.5%. To find the

maximum error of the checkerboard pattern detections in the

camera image, we perform an intrinsic camera calibration

and use the maximum reprojection error which is [∆px] =
[−0.5, 0.5] px. In addition, we assume a maximum printing,

manufacturing and bending accuracy for the corners and the

pattern of the checkerboard of [∆W ] = ([−1, 1]mm×3).
We gathered data from 26 different checkerboard poses.

Table IV shows the results. The resulting interval radii are

(a) Checkerboard. (b) Sensor setup.

Fig. 7: Overview of the equipment used for the evaluation.
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TABLE IV: Results of our and the state-of-the-art approach for real data.

[φCL ] (◦) [θCL ] (◦) [ψC
L ] (◦) [xt

C
L ] (cm) [yt

C
L ] (cm) [zt

C
L ] (cm)

Our, parameter intervals [89.8, 90.5] [−0.6, 0.4] [0.4, 1.0] [−28.3,−25.2] [15.7, 18.8] [−12.5,−10.3]
Our, corresponding radii 0.35 0.5 0.3 1.55 1.55 1.1

State-of-the-art [7] 90.6 −0.6 0.9 −24.6 15.7 −13.2

similar to our simulation studies, and thus we conclude that

our approach can also be applied to real data. Moreover, the

intervals should be guaranteed to enclose the true parameters,

since we were able to reliably enclose the true parameters

using simulated data. Besides, the table shows the results

of the established stochastic approach [7]. It can be seen

that some of the computed parameters are not enclosed by

our corresponding intervals. However, since our intervals

are guaranteed to contain the true solution, we conclude

that the parameters computed by the stochastic approach are

erroneous (e.g. due to systematic errors). Since it is infeasible

to obtain ground truth information using real data, we cannot

make this statement with absolute certainty, but only with a

strong reasoning using our simulation studies. Consequently,

our approach can be used not only to perform the extrinsic

calibration and assess its accuracy, but also to validate the

results of a stochastic approach.

IX. CONCLUSIONS AND FUTURE WORK

We present a new approach for the extrinsic calibration

of camera and LiDAR that takes sensor errors during the

identification of checkerboard features into account and

propagates them to the resulting calibration parameters. We

use interval analysis to design new bounded-error models for

both sensors, which allows us to compute intervals that are

guaranteed to enclose the true solution under the assumption

that the sensor error bounds are correct. Our evaluation shows

that these guarantees can indeed be achieved. Moreover,

the intervals allow us to individually assess the accuracy

of each transformation parameter, and thus enables us to

judge whether the calibration is sufficiently accurate. Finally,

we are able to show that our approach is compatible with

systematic errors, which is not the case for existing methods.

In future work, we plan to extend our approach to include

an automatic process that informs the user of the best next

checkerboard pose based on the uncertainty of the calibration

parameters. In addition, we aim to combine interval-based

and stochastic error modeling to find the most likely point-

valued result. Finally, we plan to fuse data from camera

and laser scanner to estimate the motion of a robot under

interval uncertainty [21]. Here, the idea is to a use a set-

based observer, which in contrast to Kalman filters can prove

that the robot’s state has to lie within a certain set.
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