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Abstract— Performing various in-hand manipulation tasks,
without learning each individual task, would enable robots
to act more versatile, while reducing the effort for training.
However, in general it is difficult to achieve stable in-hand
manipulation, because the contact state between the fingertips
becomes difficult to model, especially for a robot hand with
anthropomorphically shaped fingertips. Rich tactile feedback
can aid the robust task execution, but on the other hand it is
challenging to process high-dimensional tactile information. In
the current paper we use two fingers of the Allegro hand, and
each fingertip is anthropomorphically shaped and equipped not
only with 6-axis force-torque (F/T) sensors, but also with uSkin
tactile sensors, which provide 24 tri-axial measurements per
fingertip. A convolutional neural network is used to process
the high dimensional uSkin information, and a long short-
term memory (LSTM) handles the time-series information.
The network is trained to generate two different motions
(“twist” and “push”). The desired motion is provided as a task-
parameter to the network, with twist defined as -1 and push
as +1. When values between -1 and +1 are used as the task
parameter, the network is able to generate untrained motions
in-between the two trained motions. Thereby, we can achieve
multiple untrained manipulations, and can achieve robustness
with high-dimensional tactile feedback.

Index Terms— Multi-in-hand manipulation, Tactile sensing,
Neural networks.

I. INTRODUCTION

Our everyday lives require various manipulation tasks, and
in-hand manipulation is no exception. Humans can perform
different in-hand manipulations with the same tool or object.
For example, when using a fork, humans use it for poking,
dipping and stirring as they eat a variety of foods with dif-
ferent characteristics. Moreover, curved (anthropomorphic)
fingertips play an important role in achieving such a variety
of tasks, and enable a richer set of contact states compared
to grippers with flat fingertips for example. However, while
anthropomorphic fingertips can perform dexterous manipu-
lation, achieving multiple in-hand manipulation tasks with
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Fig. 1. The proposed architecture for variable in-hand manipulation tasks.
Abundant tactile information is processed by a CNN (green color) and each
task is defined by a task parameter in advance (orange color).

such fingertips can be difficult, because they cause complex
unstable touch states when certain conditions are encountered
(e.g., slipperiness and rolling-contact). Because each task
includes different contact states, even if the initial grasping
postures for various tasks are virtually the same, typically
each task is learned individually when using machine learn-
ing approaches.

Our previous research has focused on generalization asso-
ciated with in-hand manipulation tasks. First, the TWENDY-
ONE hand achieved in-hand manipulation with objects of
various sizes and shapes (generalization to objects) using
tactile information, and we could show that with deep learn-
ing the required training data is reduced. Thereby we could
demonstrate the importance of tactile information for in-hand
manipulation and the potential of deep neural networks to
adequately process such information [1]. Nevertheless, the
network had to be trained for each in-hand manipulation task.
Multi-fingered manipulation tasks with the Allegro anthro-
pomorphic hand are also approached by one-shot learning
to generalize to a different number of fingers used for the
manipulation (adaptation to the number of fingers) [2]. The
method in [2] again can also generalize to different sized
and shaped objects. However, at least one training sample for
each new manipulation is required, and if a new task requires
motion that is totally different to the previously learned one,
completely new training for each additional task is necessary.
Therefore, the current paper approaches different motions by
providing task information (as a task parameter) as shown
in Fig. 1. This idea is similar to [1] in terms of providing a
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task parameter to the network. In particular, in [1] the task
parameter described the manipulated object, while in this
paper the task parameter defines the motion. Furthermore,
this method is used to generate untrained motions by using
intermediate values between the trained task parameters. To
the best of our knowledge, this is the first approach to multi-
in-hand manipulation that employs such a technique. Already
in our previous work we compared learned controllers with
neural networks to predefined position control methods [1][2]
and demonstrated that the neural networks achieved more
stable and successful manipulation. Therefore, the current
paper focuses on neural networks only, to achieve a deeper
understanding of neural networks for in-hand manipulation,
rather than comparing neural networks to other methods.

Therefore, this paper has two contributing ideas:
• A combination of a CNN for tactile data and LSTM for

time-series information is implemented to achieve stable
in-hand manipulation with rich tactile information.

• Providing task information to the network as a task
parameter enables to perform untrained motions in-
between the trained motions, thereby achieving a gen-
eralization of motions.

II. RELATED WORKS
A. In-Hand Manipulation with Tactile Sensors

When it comes to in-hand manipulation tasks, the shape
of the hand’s fingertips can also be important according to
results reported in a previously-conducted investigation [3].
During in-hand manipulation with curved (e.g. anthropomor-
phic) and soft fingertips, the contact states such as the contact
areas between the fingertips and objects which produce stable
grasping change significantly, especially for achieving more
versatile manipulation. To manage this, tactile sensors are
essential for robotic hands so that the contact states can
be detected directly [1], while the use of visual sensors in
this scenario is problematic since the visual field may be
occluded by the fingertips making it impossible to deduce
the contact state at that time. Hence, some vision-based
control methods achieve dexterous object reposing only when
multiple cameras are facing the hand [4]. Contact modeling
with external forces for in-hand object manipulations has
also been previously proposed [5][6]. Modeling with tactile
feedback is also used for achieving in-hand manipulation
[7][8], but they are still specific to each target task and
not adaptive to multiple in-hand manipulations. A Markov
decision process is used as one of the reinforcement learn-
ing methods [9]. A combination of modeling and machine
learning methods is useful for in-hand manipulation [10][11],
however, it is difficult to generate complicated manipulations
in these researches, because they use under-actuated hands
with less controllability and therefore achieve only simple
motions.

In our previous research, distributed 3-axis uSkin tactile
sensors were developed and integrated into the fingertips [12]
and phalanges [13] of Allegro hands. The sensors can be
implemented in the curved skin of the fingertips and pro-
vide triaxial (x y z-axes) tactile information. Triaxial tactile

information can be useful, specifically tactile information
in the tangential direction along the fingertips and objects
can improve many in-hand manipulation tasks with some
research considering slip [14][15] or friction [16][17]. Also,
using significantly more tactile information can improve the
task performance (e.g. for object recognition [18]). However,
too much tactile information could be counterproductive, in
particular many machine learning approaches have difficulty
in processing too high-dimensional data [19]. Nevertheless,
especially deep learning has recently been shown to be able
to process also high-dimensional information.

Therefore, CNNs which have demonstrated promising
results for vision and robots [4], have been utilized with
tactile sensors for recognition tasks [20][21]. In the current
paper, CNNs are implemented for processing 3-axis tactile
information for multi-in-hand manipulation tasks, for the first
time to the best of our knowledge. Specifically, the CNN
must learn features from several tasks at the same time,
which could be difficult for the network due to the different
touch states among different tasks.

B. Generalization to Multi-In-Hand Manipulation Tasks

Tactile sensing with deep neural networks could improve
in-hand manipulation skills of robotic hands and generaliza-
tion to a variety of objects, as we have previously confirmed
[1].

However, generalization to a variety of in-hand manipula-
tion tasks has yet to be achieved, as one network was used for
each task [1]. Some studies have reported on the adaptation
to multi-tasks [22][23]. Multi-time scale RNNs are applied
to tasks which are then divided into sub-tasks [24]. Point
clouds have been used to adapt to multiple demonstrations
by optimizing probabilistic models [25]. Parametric bias (PB)
has also been used for generalizing to not only multi-tasks
but also untrained tasks including robotic arm manipulation
tasks [26][27]. Since they use visual information but do
not focus on tactile sensing, the manipulation does not
include complicated in-hand manipulation. The PB itself
is an effective method that is employed in many fields
(e.g., action exploration in a map [28] and face detection
[29]). As one of the state of the art methods for gener-
alization to multi-tasks, one-hot vector has been exploited
for generating multiple manipulation motions that share the
same weights in the network architecture based on visual
information and convolution-based VAE-GAN (variational
autoencoder-generative adversarial network) and LSTM [30].
Even though there are some methods used for adapting to
multi-manipulation tasks, including PB and one-hot vector,
the network architectures for in-hand manipulation with
tactile sensing that can manage multi-in-hand manipulation
tasks have yet to be investigated.

III. PROPOSED METHOD

A. Allegro Hand with Tactile Sensors

As one of the commercially available multi-DOF robotic
hands, an Allegro hand is used in this paper. Distributed 3-
axis uSkin tactile sensors were mounted on the phalanges
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[12] and fingertips [13] in our lab. Previous work confirmed
the usefulness of 3-axis tactile information from uSkin for
object recognition [18][31]. Therefore, we assumed uSkin
could play an important role for in-hand manipulation as
well. In addition, there are 6-axis F/T sensors in each
fingertip to achieve more stable manipulation as effectively
used in [2]. As described in Fig. 2, 6-axis F/T sensors provide
2 (fingertips) * 6 (force measurements) = 12 measurements
and the uSkin sensors provide 2 (fingertips) * 3 (axis) * 24
(sensor chips) = 144. There are a total of 8 joints in the hand;
thus, the hand provides 164 measurements in total.

B. Network Architecture

Fig. 1 shows a schematic of our proposal. Shown in
green, the 3-axis tactile information is processed by a CNN.
Inputting tactile information from uSkin to the CNN is
accomplished in the same manner as in [31], as described
in Fig. 3. Twenty-four taxels on each fingertip have xyz
information, as described in Fig. 3. The shape of the input
maps from each fingertip is 6 * 5, with ”0” (red colored)
added to the positions where sensors are not installed, which
makes it possible to construct rectangular input maps to
convolute them by 2 * 2 or larger filters of CNNs. In the
current paper, input maps have a size of 6 * 5 * 3 based on
the uSkin coverage.

Task information corresponding to each task, which is
highlighted in orange, is applied to the networks. In this
research, two tasks are trained. Furthermore, parameters
between the defined task information (-1 and 1) are used
for generalizing to un-trained tasks.

A LSTM is also trained, as LSTMs in general are well
suited to deal with time-series information. When the outputs
from the CNN are input to the LSTM, the dimension is 20
because other inputs (joint angles and 6-axis F/T sensors
measurements) to the LSTM have a similar number of
dimensions and each input could be processed with equal
importance by the LSTM.

In short, inputs to the LSTM are joint angles, 6-axis
F/T sensors, 3-axis tactile information from uSkin, and task
information.

Fig. 2. The customized Allegro hand with uSkin and 6-axis F/T sensors as
used in this paper. Each fingertip has uSkin on the surface and a 6-axis F/T
sensor inside of the fingertip. Twenty-four sensor points are placed in each
uSkin and each point has x-, y-, and z-axis tactile information. Z-axis is for
normal force. X- and y-axis are for shear forces along with the shape of
the fingertip, i.e. uSkin is curved along with the anthropomorphic fingertip.
The 6-axis F/T sensors are mounted the same way as in [1].

The outputs from the LSTM are the same as the inputs
(but the output is the next time step from the input) except
for the defined task information. We include the tactile
measurements in the output, even though they are not used
for control, because we expect that this makes the network
more robust. The parameters for the network are described
in Section IV-B, IV-C, and Table I.

As in previous work we already used and evaluated
simpler network architectures, in particular multi-layer per-
ceptrons [1], the current paper focuses on more advanced
architectures, which are able to produce variable in-hand
manipulations.

IV. EXPERIMENT DESIGN

A. Data Collection

In this study, posture interpolation control was used for
collecting training data as it was used in our previous
research [2][32]. Using this method, initial (starting) and
final postures are defined and those postures (defined as
joint angles) are interpolated resulting in generating in-
hand manipulation motion. The details of this method can
be found in [2][32]. Interpolation control can be used for
achieving in-hand manipulation with robotic hands [33],
but has limited adaptability to errors in the initial grasping
positions on the fingertips and can generate too much force
on objects which ends up breaking objects, as comparison
experiments between neural networks and the interpolation
control showed [1]. Interpolation control is a simple yet
powerful technique to collect training data instead of using
a data glove for teleoperation, especially for the Allegro
hand. In particular, unlike the human hand, the Allegro hand
lacks abduction/adduction in all finger, which makes precise
inverse kinematics control of its fingertips and teleoperation
impossible.

For each in-hand manipulation trial, the initial grasping
position of the target object is determined randomly by the

Fig. 3. Schematic of proposed method focusing on CNN processing of
uSkin tactile information. Inputs from uSkin have a size of 6 * 5 by inputting
”0” (red-colored) and 3 channels for x-, y- and z-axis. The compressed
tactile features from both CNNs are concatenated with joint angles, 6-axis
F/T sensors, and task information value before being used as input to the
LSTM layer. The task information has a range from -1 (representing “Push”)
to 1 (representing “Twist”). The output from the LSTM layer is the next time
step of the uSkin tactile information, joint angles, and 6-axis F/T sensors.
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experimenter so that the neural networks can be trained
effectively with training data that has motions starting from
as many initial grasping positions as possible. An XYZ
positioning stage was also used for deciding where to put
an object on the fingertips (details are described in Section
V-A).

The target in-hand manipulation motions (i.e., twisting
and pushing) are shown in Fig. 4. For the twist motion,
the grasping position of an object shifts from the top of the
index finger to its side. For the push motion, the grasping
position of the object changes from the top of the index
finger and thumb to their bottom side. These motions were
selected because they include various difficulties during in-
hand manipulation. In particular, rolling-contact and slip can
occur, caused by the shape of anthropomorphic fingertips.
The contact areas between the object and fingertips can
change gradually and lead to difficult but dexterous ma-
nipulation. The target motions are collected by interpolation
control with selected final grasping postures. In this study,
the target object was a spherical object made of styrene
foam with a diameter of 40 mm. Only target motions were
the focus of this study, unlike our previous research that
focused on a variety of objects [1]. For collecting training
data, each target task was executed 30 times successfully
with a sampling rate of 100 Hz, resulting in a total of 60 trials
and 400 time steps for each. Eighteen out of 30 trials from
each task were used as the training dataset, and the remaining
12 trials from each task were used as the validation dataset
to validate the trained neural network models. Therefore, the
size of the training and validation dataset in total are 36 and
24 respectively. Each dataset was chosen randomly from 30
trials from each task. All the sensor values were normalized
to values from -1 to 1 as input for the neural networks.

Fig. 4. There are two in-hand manipulation tasks (Twist and Push). The
starting grasping posture for both tasks is the same. The manipulated object
is a 40 mm sphere.

TABLE I
NEURAL NETWORK SETTING

Architecture I Architecture II Architecture III Architecture IV
Networks LSTM CNN-LSTM CNN-LSTM CNN-LSTMPB

All Inputs
to Networks

165
uSkin 3-axis,
6-axis F/T,
Joint Angle
Defined Info

200
uSkin 3-axis,
6-axis F/T,
Joint Angle

201
uSkin 3-axis,
6-axis F/T,

Joint Angle,
Defined Info

189
uSkin 3-axis,
Joint Angle,
Trained PB

Inputs to
1st Conv. - 180

1s
t

C
on

v. In/Out - 3/14
Filter Size - 3, 3

Stride - 1, 1
Activation - Relu

2n
d

C
on

v. In/Out - 14/28
Filter Size - 3, 3

Stride - 1, 1
Activation - Relu
1st FC
(uSkin) - 200

2nd FC
(uSkin) - 20

Inputs to FC
(all inputs) 165 40

(20 + 12 + 8)
41

(20 + 12 + 8 + 1)
29

(20 + 8 + 1)
1st FC

(all inputs) 100 100

2nd FC
(all inputs) 200 200

LSTM layer 200
Outputs 164 8
Training
Epochs 25000 27000 28000

Batch Size 36 18 36 36

B. Neural Network Architectures

Four neural network architectures are described in Table I.
The parameters for each network were heuristically selected
by the experimenter with the smallest loss as a stopping
criteria from each network during training and for successful
motions on the real robot. The left side of Table I is a
description of the layers. The dropout method was used
in the 1st Conv., 2nd Conv., 1st FC (uSkin), and 1st FC
(all) with a rate of 0.5. The output layer has a size of
164 (except for architecture IV), including the joint angles,
the six-axis F/T sensors and uSkin sensors. We include the
tactile measurements in the output, because we expect that
this makes the learning more robust. However, only the joint
angles were used for controlling the hand.

LSTM with defined task information (represented as “De-
fined Info” in Table I) was prepared as Architecture I. The
LSTM itself was used for processing time-series informa-
tion, and this was compared to CNN-LSTM with defined
task information (Architecture III) to confirm the ability of
convolution layers to process abundant tactile information.
Since the other inputs (joint angles, 6-axis F/T sensors, and
uSkin) are normalized from -1 to 1, the task parameter for
the twist motion was defined as -1, and the task parameter
for the push motion was defined as 1. The number of inputs
for this architecture was 144 (24 (the number of sensors
for a fingertip) * 3 (force axes) * 2 (number of fingertips))
from uSkin tactile sensors + 8 (joint angles) + 12 (6-axis
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F/T sensors) + 1 (task info) = 165. The number of training
epochs was 25,000 and the batch size was 36. Compared to
[18], the number of training epochs is much larger, due to
the difficulty of in-hand manipulation tasks.

Architecture II does not provide the task parameter as
input to the neural network. Since this architecture has
convolution layers that accept inputs from uSkin sensors,
inputs from sensors on fingertips have the number 0 to
provide input maps to the 1st Conv. Layer as described
in Section III-A. Therefore, the number of inputs from the
uSkin tactile sensors is 180 (24 (the number of sensors for a
fingertip) + 6 (the number 0 for a fingertip) * 3 (force axes)
* 2 (the number of fingertips), (6 * 5 * 3 * 2)). There are two
fully-connected layers for uSkin sensor information (1st and
2nd FC (uSkin) layers) for compressing the features from
the 2nd Conv. Layer into a similar size of the other inputs
(joint angles and 6-axis F/T sensors) resulting in a uSkin
feature dimension of 20. The number of total inputs for the
1st FC is 40 (20 uSkin features + 8 joint angles and 12 6-axis
F/T sensors). After the 2nd FC layer (all inputs), the LSTM
layer with a size of 200 provides outputs with the size of
164 which includes uSkin, joint and 6-axis F/T information.
Each convolution layer had filters with a size of 3 * 3, stride
of 1, and the activation function of Relu. The number of
training epochs was 27,000. The batch size was 18 because
this network was trained (and validated) separately for each
of the two tasks due to the incapability of performing two
tasks (pushing and twisting) by one network.

Architecture III is CNN-LSTM with defined task infor-
mation (represented as “Defined Info” in Table I) which
is almost the same as Architecture II, but defined task
information is added to the inputs. Therefore, the input
size to the 1st FC (all inputs) layer was 41 (40 + 1 task
information). The output from the LSTM layer had a size of
164, which was the same as for the other architectures. The
number of training epochs was 28,000. The batch size was
36.

Architecture IV CNN-LSTM with PB required the PB to
be trained, as will be explained in more detail below. Inputs
for this architecture are uSkin, joint angles and PB, and the
output layer includes only joint angles because when 6-axis
F/T sensor information was also input to the CNN-LSTM
and the output layer includes not only joint angles but the
others, the success rate of in-hand manipulation got worse.
The number of training epochs was 28,000. The batch size
was 36.

The Relu activation was used for all the layers including
Conv., LSTM, and FC layers except for the output layer.
the output layer did not have an activation function. The
loss function used was the mean squared error. Adam was
used as the optimizer for all the architectures except for
Architecture IV (with a learning rate of 0.00001, a step size
of 0.0001, a first exponential decay rate of 0.9, a second
exponential decay rate 0.999, and a small value for numerical
stability of 1e-08). The learning rate for Architecture IV
was set to 0.0001 so that PB is optimally updated. Those
four architectures were built with the Tensorflow library for

Python, and the training of networks were accelerated using
the GTX Geforce 1080 and RTX 2080 as the GPUs.

C. Parametric Bias for Task Generalization

As an alternative to the predefined task parameter, a PB
can be trained. The PB was attached to a fully-connected
layer where other inputs including joint angles, 6-axis F/T
sensors and features of uSkin tactile information from CNNs
were attached in the networks mentioned in Section III-B
instead of defined task information (Architecture IV). The PB
(used in Section V-B) was trained to update the PB value for
each task. The value was initialized as 0, and it converged
in a range of -1 to 1 after training. The PB was trained
with corresponding in-hand manipulation tasks, with details
described in [26].

V. EVALUATION

A. Adaptability to Initial Grasping Positions

First, the CNN is evaluated for its ability to adequately
process tactile information from multi-in-hand manipulation
tasks. The CNN was connected to the LSTM, as shown in
Fig. 3 and was defined as CNN-LSTM in this paper. The
CNN-LSTM with defined task information (Architecture III)
was compared with LSTM with defined task information
(Architecture I) regarding the success rate of in-hand ma-
nipulation. Success in this study was defined as follows:
the object did not drop, while the final grasping posture
was reached (pushing: the object reaches the bottom of the
fingertips and both fingertips face each other; and twisting:
the object reaches the side of the index fingertip and the
middle of thumb). In all settings, the hand was controlled
via closed-loop control, i.e. the current sensor readings are
input to the neural network, and the joint angles at the output
are used for control. The LSTM successfully performed the
twist motion 3 times out of 10, and the push motion 5 times
out of 10. On the contrary, CNN-LSTM could achieve the
twist motion 7 out of 10 times and the push motion 8 out of
10 times.

Fig. 5. The XYZ positioning stage for the experiment shown in Section
V-A. The initial grasping position of the object is determined precisely by
using the stage. The position (X, Y) = (0, 0) is the center of the fingertip.
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Moreover, the adaptability of each network to the initial
grasping position of the object was evaluated. An XYZ
positioning stage was used, which makes it possible to put
the object in x-, y-, and z-axis in steps of 0.1 mm. The
results are presented in Fig. 6. The position of the object on
the fingertips was modified in steps of 2.5 mm. The red color
indicates the initial grasping positions on the fingertip from
which a successful push or twist manipulation was performed
three out of three times (100% success rate). For LSTM, 1
position for the twist motion and 5 positions for the push
motion were successful. For CNN-LSTM, 23 positions for
the twist motion and 39 positions for the push motion are
where the manipulation was achieved.

With the two aforementioned experiments we confirmed
that CNN-LSTM was better than only LSTM and that the
CNN is useful for processing tactile information. Therefore,
CNN-LSTM with defined task information (Architecture III)
was used in the latter evaluation experiments.

B. In-Hand Manipulation with Task Information

As the first experiment for defined task information, com-
parison of CNN-LSTM with or without defined task infor-
mation and with trained PB was conducted, by investigating
the number of successful in-hand manipulations.

1) Training of Parametric Bias: The trained PB was also
compared to using defined task information. While training
the PB, the parameters in the PB were updated to acquire
features which could represent each task. Fig. 8 shows the
distribution of trained PBs for each task. PB values ranged
from 0.2 to 0.8 and there was no overlap between tasks,
which suggests that the PBs were sufficiently trained. For
real-time control of the Allegro hand, the largest value for
the twist motion and the smallest value for the push motion
(indicated by arrows in Fig. 8) were used so that the network
can tell apart the tasks clearly. PB values for each task were

Fig. 6. The result of a comparison between Architecture I and Architecture
III described in Section V-A. From the center of fingertips, the initial
grasping positions are shifted in steps of 2.5 mm in x- and y- axes.
Architecture III has more initial grasping positions where successful in-hand
manipulation was achieved three times out of three. This result indicates that
the CNN could extract informative features for executing stable in-hand
manipulation.

TABLE II
SUCCESS RATES OF EACH IN-HAND MANIPULATION BY EACH

ARCHITECTURE

Architecture I Architecture II Architecture III Architecture IV
Twist 3/10 2/10 7/10 7/10
Push 5/10 0/10 8/10 2/10

input to the network to generate in-hand manipulation for
each task 10 times.

2) Result of In-Hand Manipulation: As shown in Table II,
Architecture II CNN-LSTM could achieve only 2 successful
in-hand manipulations in total (including both tasks), but
Architecture III CNN-LSTM with defined task information
could achieve 15 out of 20 times a successful in-hand
manipulation in total (examples are shown in Fig. 7). One
of the possible reasons could be that architecture III was
trained with both twist and push motions, which resulted
in the network getting more training data and becoming
more robust with respect to not dropping the object, while
still embracing adaptability to multi-tasks. Architecture II
had one neural network for each task, so each network
had only half the training data available, which seems to
have been insufficient to learn stable in-hand manipulation.
For Architecture IV, when the PB for the twist motion
was used as input, manipulation for the twist motion was
successfully generated 7 out of 10 times. On the other hand,
when the PB for the push motion was input, successful push
motion was generated only 2 out of 10 times, and the other
8 times included both dropping the object or performing
twisting motion instead. This should be investigated further
as part of future work, especially, how the trained PB values
corresponded to each task, because it could be possible to
confirm that the PB is also useful but that the PB values are
just difficult to handle for in-hand manipulation.

C. Intermediate Grasping Motions with Task Information

By changing the value of the defined task information,
the change in manipulation was investigated. Architecture III
was used here. As shown in Fig. 9, the manipulation gradu-

Fig. 7. The top row shows a successful in-hand manipulation with
Architecture III (CNN-LSTM with defined task information). The bottom
row is a sequence from Architecture II (CNN-LSTM without defined task
information). While Architecture II is trained with only Twist training data,
Architecture III was trained with Push and Twist, and Architecture III could
achieve more stable in-hand manipulation.
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Fig. 8. The distribution of self-organized (trained) PBs for Twist and Push.
All 18 points are where PB values converged after adequate training epochs.
The PB values for Twist and Push are distributed in different ranges (Twist
in a range from 0.5 to 0.7 and Push in a range from 0.3 to 0.5), which
indicates that the training of PBs was successfully accomplished. For the
real time control of the Allegro hand, the PB value pointed out by a red or
blue arrow was used, respectively.

TABLE III
SUCCESS RATE OF EACH DEFINED TASK INFORMATION

Task
Info -1.0 -0.5 0.0 0.5 1. 0

Success
Rate 7/10 7/10 8/10 8/10 8/10

ally changed from -1 as Twist to 1 as Push. When using a
defined task information value of 0, an intermediate posture
was successfully generated as the final grasping posture and
the grasped object was not dropped by the hand. Successful
in-hand manipulation was achieved at least 7 times out of
10 regardless of the defined task information value (-1 to 1
in 0.5 increments) shown in Table III. From this result, we
confirmed that untrained tasks could be achieved by changing
the task parameter.

VI. CONCLUSION

This paper presents the results of our neural network
study with task information for multi-in-hand manipulation
with 3-axis tactile sensors. CNNs and LSTMs were used
for processing copious amounts of tactile and time-series
information of in-hand manipulation. Task information was
applied to tasks that required push and twist motions. The
CNN was enough to process complex tactile information
resulting in an improvement of robustness to initial grasping
position. By using defined task information, the success rate
of in-hand manipulation was higher than that without task
information. Finally, defined task information was utilized
to generate untrained tasks between two trained tasks. Im-
portantly, we confirmed that it was possible to define the
final grasping posture by changing the task parameter.

Future works could make in-hand manipulation more
stable by changing hyper-parameters of CNN-LSTMs and
increasing the size of the training dataset to avoid overfitting
as our other work achieved stable manipulation when larger

sized dataset was used [34]. Generalization to changing the
orientation of the hand and increasing the number of tasks
learned by a network are also possible in future work. This
method could possibly scale up to be applied to multi-
fingered and more complicated tasks.
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