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Abstract— Personalized online machine learning allows a
very accurate modelling of individual behavior and demands.
In particular, a system that dynamically adapts during runtime
can initiate a continuous collaboration with its user where
both alternately adjust to each other to maximize the system’s
utility. However, in application scenarios based on supervised
learning it is often unclear how to obtain the required ground
truth for such dynamic systems. In this paper, we focus on
applications where a real-time classification of sequential data is
crucial. Concretely, we propose to adapt an online personalized
model solely based on pseudo-ground-truth information which
is provided by another machine learning model. This model has
the advantage to classify sequences in retrospective with a small
delay and thus is able to achieve a higher performance than
real-time systems. In particular, it is a pre-trained offline model,
which means that no ground-truth information is necessary
during runtime. We apply the proposal on the task of online
action classification, for which the benefits of personalization
have been recently emphasized.

I. INTRODUCTION

Personalized machine learning has been recently analyzed
in different domains such as motion classification [1]–[3],
advanced driver assistant systems [4]–[6] and recommenda-
tions [7]–[9]. The general idea is that the focus on one person
drastically reduces the variance within the data, enabling a
better performance with a smaller amount of data. In other
words, products/services trying to serve a broad range of
customers have to make sacrifices in order to perform well
on average. In contrast, the focus on a single user enables
a very specific adaptation to individual demands. Hence,
personalization is particularly crucial in the case of highly
diverse customers. Additionally, the major problem of inter-
person generalization is avoided, reducing the computational
complexity as post-processing steps such as normalization or
temporal integration can often be omitted [3].

In the literature, personalization has mainly been consid-
ered in combination with offline machine learning [1], [2],
[4], [8], [9]. However, personalization is a more natural fit to
online machine learning, since products are often exclusively
used by a single person. Therefore, systems that are able
to adapt during their application are implicitly personalized.
This combination is more powerful as it allows even to
handle changes in user preferences and environments. We
envision an adaptive online system that collaborates with
its user where both alternately adjust to each other over
time and maximize the utility of the system. The advantages
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of personalized online learning models have recently been
emphasized in [3], [5].

One crucial challenge in case of supervised online learning
is the acquisition of labels on the fly, drastically limiting
the application range. Getting supervised information is in
general challenging, and particularly large models, e.g. Deep
Neural Networks, require huge amounts of labeled data. Still
nowadays, the majority of the data is manually labeled by
human annotators and therefore expensive. In the case of
offline learning, the labels can be collected in advance over
a long time period. However, such an approach is not viable
for dynamically adapting systems and a different solution is
required.

Nonetheless, there are a few options to obtain the ground
truth during runtime. One common approach is to obtain the
feedback explicitly from humans. For instance, an individual
user marks emails as spam for spam classification, but also
in human-robot interactions the labels may be explicitly
demanded [10], [11]. Clearly, this is rather tedious, requiring
the willingness of humans to cooperate. Even though the
label burden can be reduced with active-learning techniques
[12], where only the most-promising examples are annotated,
human input is still required. In case of prediction tasks, an
automatic extraction of ground truth can often be done in
retrospective. For instance, personalized online learning was
recently applied in the task of driver-maneuver prediction
at intersections [5]. As soon as the car has passed the
corresponding intersection the executed action is automat-
ically labeled within the recorded data and fed back into the
online learning model. However, various problems such as
online time series classification remain challenging even in
retrospective, requiring a different solution.

Usually, offline models are more accurate and robust than
online ones, therefore, online models are often neglected for
real-world applications. However, in case of personalization
they often provide, amongst other benefits, a significant per-
formance advantage. In this paper, we exploit this advantage
in order to obtain an accurate ground truth for the purpose
of online personalization. Concretely, we propose a system
that leverages the benefits of personalized online learning
in the task of online action classification. The main idea is
that even though the classification in retrospective may still
be challenging, there are various application domains where
it significantly facilitates the task. Therefore, we propose to
pre-train an offline model that performs the classification in
retrospective, yielding a higher performance than a model
classifying without delay. Its labels are then used as pseudo-
ground truth to adapt a personalized online model. In par-
ticular, our approach does not require ground truth during
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runtime.
The approach is related to semi-supervised learning [13]

as one model, trained with supervised examples, provides
the labels for the adaptation of another model. However,
the novelty of our contribution is to use the classification
output of a pre-trained average-user model, which classifies
sequences in retrospective, as pseudo-ground truth for an on-
line personalized model to exploit the performance benefits
of online personalization. We show that the pseudo-ground
truth is accurate enough to enable the personalized online
model to outperform an average-user offline model, which
was trained with real-ground truth.

II. FRAMEWORK

The proposal is designed for applications that require a
real-time classification of time-series data. Concretely, we
focus on the evaluation of off- and online learning models for
the task of online action classification [14]. Given an input
stream of data the goal is to instantly classify the current
motion a human is performing. In the following, we define
the overarching problem and describe the characteristics of
both learning schemes.

A. Online time-series classification
A stream {x1,x2, . . . ,xt} of feature vectors (IMU sensor

measurements in our case) arrives one after another, where
xi ∈ Rn. As t is the current time, the goal is to assign to xt

the correct class among the set of predefined C classes. In
our case, a class corresponds to an action such as walking,
standing, etc. Algorithms are allowed to use not only the
current feature vector xt but also those of the past. The
classification is done for each feature vector presented in
the order of the stream. A model assigns the class in the
form of:

y?t = argmax
yt∈{1,...,C}

P (yt|xt−l−1, . . . ,xt),

where l is the number of past feature vectors an algorithm
is allowed to use. Naturally, online time-series classifica-
tion is more challenging than its offline counterpart, since
methods are not allowed to “peek in the future” and must
instantaneously determine the class of xt. This fact is the
foundation of our approach. We delay the classification
for a predefined number of m time units which enables
the retrospective model to utilize also the feature vectors
xt+1 . . .xt+m, leading to a higher performance.

B. Offline Learning
In the offline learning setting, an algorithm generates a

model function h : Rn 7→ {1, . . . , c} based on a training
set Dtrain = {(xi, yi) | i ∈ {1, . . . , j}}. In the subsequent
test phase, the model is applied on another set Dtest =
{(xi, yi) | i ∈ {j+1, . . . , k}}, whose labels are kept hidden.
The model provides a label ŷi = h(xi) for every point
xi ∈ Dtest and the 0-1 loss L(ŷi, yi) = 1(ŷi 6= yi) is
calculated. The test error

E(Dtest) =
1

k − j

k∑
i=j+1

L(h(xi), yi) (1)

is the commonly applied performance metric. In our case,
an average-user offline model is tested on the data of one
hold-out subject and trained with the data of the remaining
ones.

C. Online Learning

The online learning setting is more challenging, since the
data is accessed one-by-one in a predefined order and the
algorithm provides a model after each datapoint. Therefore,
models initially tend to deliver a lower performance
compared to their offline counterparts. However, they
provide the benefits of a low time and space complexity,
are able to process datasets of arbitrary sizes and allow
particular tuning to a special problem domain.
Formally, a potentially infinite sequence St =
(s1, s2, . . . , st) of tuples si = (xi, yi) arrives one
after another. In contrast to the offline setting, a model
function is generated after each tuple. As t represents the
current time stamp, the classification ŷt = ht−1(xt) is done
according to the previously learned model ht−1. After the
true label yt is revealed, the applied learning algorithm
generates a new model ht = train(ht−1, st) on the basis of
the current tuple st and the previous model ht−1. Usually,
the interleaved-test-train error is used for performance
evaluation and is defined as:

Ê(St) =
1

t

t∑
i=1

L(hi−1(xi), yi). (2)

We iteratively train the personalized online models from
scratch. Precisely, each time series of one user is first
classified by the model and subsequently used for training.

The fundamental difference between off- and online ap-
proaches is that the offline methods have generally a much
larger set of training data available, whereas the online
algorithms have the capability to adapt to the actual test
data. The natural consequence is that online methods using
few data are only applicable if the variation in the test
condition is not too high, which is particularly the case for
personalized learning. Online algorithms are even able to
adapt to non-stationary environments and efficient methods
have been recently published [15], [16]. However, concept
drift goes beyond the scope of this contribution and is not
explicitly considered here.

III. PROPOSAL: PERSONALIZED ONLINE LEARNING
WITH PSEUDO-GROUND TRUTH

The main idea of our approach is based on the fact that
even though classifying a sequence in retrospective may still
be difficult, it is often substantially easier than classifying it
instantly. Therefore, it is plausible to assume that a model
classifying in retrospective achieves a higher performance.
We leverage this performance gap to adapt the personalized
model during runtime.

We propose to construct a retrospective ground-truth
model that classifies the time series with delay. Given the
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Fig. 1: Overview of the system architecture. The personalized
model is performing online action classification without
delay. However, the adaptation of the model is delayed due
to the buffering of the retrospective model that provides the
pseudo-ground.

feature vector xt at time t the model classifies it with a
delay of m time units at time t+m:

ŷt = argmax
yt∈{1,...,C}

P (yt|xt−l−1, . . . ,xt+m). (3)

The delay allows the model to leverage features after time
t which facilitates the task and yields a higher performance.
In our setting, it allows to classify the current motion with
information about how the motion progresses after the query
time t.

The retrospective model is an average-user offline model
which is trained in advance, preferably utilizing a large
dataset including many different users. During runtime, this
model is applied to feed its classification outputs as pseudo-
ground truth to the personalized online model for adaptation.
The personalized model is performing online classification
for the time t, meaning it classifies the current feature
xt immediately without any delay. However, it is adapted
at least with a delay of m time units, such that at time
t + m it can use the tuple (xt, ŷt) for adaptation. Figure
1 gives an overview of the overall architecture. Naturally,
the performance of the personalized model is bounded by
the one of the retrospective model.

A. Conditions for Applicability

There are several prerequisites for the applicability of our
approach. For a given task at hand the following conditions
must apply:

1) Classification in retrospective is not trivial.
2) Online classification without delay is absolutely nec-

essary.
3) Classification in retrospective yields a higher perfor-

mance than online classification.
4) Personalized online models (using ground truth infor-

mation) are more accurate than average-user offline
models.

The first two conditions exclude alternative solutions that
are preferable for certain scenarios. For instance, heuristic
approaches are often sufficient to obtain the ground truth
in retrospective for prediction tasks, therefore an additional
model is not necessary. In the case that a classification delay
is acceptable, a retrospective model could directly be used
for classification. The last two conditions ensure that there is
potential to improve the performance of average-user offline
models with the proposal.

B. Drawbacks

Even though our approach is quite intuitive, applicable to
various scenarios and can easily be realized, it has various
disadvantages. For instance, it trades an adaptation delay of
the personalized model to obtain the pseudo-ground truth,
which in most cases is negligible. More relevant is the
increase of the computational burden as well as the higher
system complexity due to the usage of two models, poten-
tially relying on different sets of features. The potentially
biggest drawbacks follow from the fact that the system de-
pends on the retrospective model, which is a static, average-
user model. Hence, it needs to generalize across different
users, potentially requiring post-processing steps such as
normalization and temporal integration. Furthermore, the
architecture cannot deal with changes in the data distribution
over time, also known as concept drift.

IV. DATASET

In this paper, we utilize the dataset that we recently
introduced in [3]. It was recorded using the popular Xsens
bodysuit with seventeen IMUs, measuring linear and angular
motions with a triad of gyroscopes and accelerometers,
distributed on different body locations [17]. The data was
sampled with a rate of 60Hz.

Four different subjects performed nine movement se-
quences consisting of several single actions of sixteen dif-
ferent classes. These sequences were repeated 10-20 times.
Figure 2 depicts some action sequences. Altogether, the
dataset encodes 2755 actions represented by 329021 single
instances covering a time period of around ∼ 90 minutes.
The distribution of the motion durations is depicted in Figure
3.

V. EXPERIMENTS

We focus on comparing an average-user offline model
against a personalized online one, which is dynamically
adapted based on pseudo-ground truth. The pseudo-ground
truth is provided by another average-user model which
classifies the data with delay. Table I provides an overview
of all analyzed models. Please note that the personalized
model trained with real ground truth (PERS) is not available
in practice. It is merely included to analyse the performance
loss caused by the pseudo-ground truth, which can be seen
as the untapped potential of personalization by our method.

We evaluate our approach in two alternative scenarios
which empirically provide the upper- and lower performance
bounds of our method on the evaluated data. In the first, we
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Fig. 2: Exemplary motion sequences consisting of different subsequent actions.

Fig. 3: The distribution of the motion duration. The mean
duration of an action is 1.9 s seconds and the longest motion
has a duration of 8.5 s.

TABLE I
THE EVALUATED MODELS IN OUR EXPERIMENTS. IN PRACTICE,

ONLINE-GROUND TRUTH IS NOT AVAILABLE SUCH THAT THE MODEL

PERS CANNOT BE CONSTRUCTED, REQUIRING ALTERNATIVE

APPROACHES. RF=RANDOM FOREST [18]; ORF=ONLINE RANDOM

FOREST [19]

Abbr. Algorithm Description

AVG RF Average user model
AVGR RF Average-user model that classifies with delay

and provides the pseudo-ground truth

PERS ORF Personalized model adapted with ground truth
PERSP ORF Personalized model adapted with pseudo-ground truth

assume to have perfectly segmented motions, whereas in the
second we use no segmentation at all. A perfect segmentation
enables the creation of feature vectors that maximize the
coverage of the current motion without the risk of encoding
portions of temporally adjacent motions. Naturally, this is the
ideal case for our approach as the performance advantage of
the retrospective model is maximized, leading to accurate
pseudo-ground truth. Conversely, having no segmentation
limits the leeway of the retrospective model due to the trade-
off between the coverage of the current motion and the risk
to include portions of temporally adjacent motions.

A. Model evaluation

Average-user models are trained in leave-one-subject-out
scheme. Precisely, they are tested with the data of one
specific subject, whereas data of the remaining subjects is
used for training. This is done repeatedly such that each
subject is used for testing once.

Personalized models are evaluated in the online learning
setting, as described in Section II-C. The model classifies
first the label of one sample and uses it afterwards for
model adaption. This is done for all samples in the dataset.
However, the order of each instance within one performed
action is predefined by the recording time, and therefore,
there is a high degree of label auto-correlation, since each
action consists of a number of samples with the same
class. In this case, the ordinary online scheme is misleading
because a naive classifier, simply using the previously seen
label for classification, achieves a very low error rate without
learning any mapping between the input stream and the
corresponding labels. Therefore, we perform an action-wise
evaluation. Precisely, the model classifies all samples of one
action, before the corresponding labels get revealed and the
models are adapted. Thereby, model PERS uses the real-
ground truth, whereas model PERSP relies on the pseudo-
ground truth provided by the restrospective model AVGR.
Personalized models are trained from scratch for each subject
in single pass. Consequently, they are without any form of
pre-training and only access the data of one subject. Please
note, that we calculate both errors (off- and online) using the
same data for testing, but the online algorithms continuously
adapt their model to the test subject.

We apply on- and offline variants of the popular Random
Forest (RF) [18], [19] to enable a possibly fair comparison.
The RF is a well known state-of-the-art learning algorithm,
delivering highly competitive results [20], [21] and is easy
to apply out of the box. Concretely, we use decision forests
consisting of 100 trees and rely on the class entropy as
impurity function [22].
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Fig. 4: Effects of varying the size of the encoded time-
window in both temporal directions on the model error rate.
The configuration yielding the lowest error is highlighted
and achieved by encoding 3.33 s of the past motion data and
3.66 s into the future. In general, a large horizons in both
directions lead to a high performance.

B. Data Encoding

Similar to our previous work [3], we performed a wrapper-
based feature selection [23] and selected the 5 sensors
that yielded the highest performance for personalized and
average-user models respectively. We refer the interested
reader for more details about the feature selection process to
[3]. Based on the selected sensors we construct the feature
vector in the following way:
For each time t we stack the IMU features of the covered
time duration (l instances before t for all models and
additionally m instances after t for the retrospective model)
and encode them via the Discrete Cosinus Transformation
(DCT) [24]. Finally, the 5 largest coefficients are used as
feature vectors for each IMU input signal. The resulting
feature vectors of the personalized models consist of 135
dimensions, whereas 165 dimensions were used by the
average-user ones.

C. Segmented Motions

Initially, we assume perfectly segmented motions and
correspondingly pad the feature vectors with zeros at the
beginning and end of a motion.

1) Varying the length of encoded window: In preliminary
experiments, we determine the hyperparameters for the size
of the encoded window (variables l, m in Equation 3). Figure
4 shows the performance of an offline classifier trained in
leave-one-subject-out with varying sizes of encoded time
windows. As expected, the performance increases with a
larger time window for perfectly segmented motions. It
can be seen, that encoding a time horizon of more than
3.66 s in either direction (past or “future”) does not provide
further benefits for our dataset. Hence, we set the parameters
accordingly, i.e. l = 3.33 s;m = 3.66 s. Therefore, the online
action classification models (AVG, PERS, PERSP) are fed
with feature vectors that encode 3.3 s of the past motion data,
whereas the retrospective model processes feature vectors

Fig. 5: The classification performance of the different mod-
els. The personalized model using pseudo-ground truth
(PERSP) performs better than the average-user model after ∼
15min of motion data. Personalized models are trained from
the scratch and continuously adapt to the specific subject,
thereby reducing their error rate. Contrary, the average-user
models are pre-trained and static.

that encode 7 s of motion data (3.33 s of the past data and
3.66 s of the “future” input). Essentially, the retrospective
model is mostly able to access the whole motion for classifi-
cation considering the tpyical motion durations in the dataset
(see Figure 3).

2) Main Experiment: We performed our main experiment
of training personalized models with pseudo-ground truth
100 times re-shuffling the order of the motions for each
repetition. As the total number of data instances varies across
the subjects we truncate the amount of considered data
instances for each subject to the same length (∼ 22 minutes)
after reshuffling.
Figure 5 depicts the learning curve of the personalized
models. The average-user model classifying the samples in
retrospective (AVGR) clearly performs better than the one
classifying it immediately (AVG), nearly halving the error
rate. As already mentioned, these models are static and
therefore their performance is more or less constant over
time. In contrast, the personalized models are continuously
adapting thus reducing the error rate with increasing amount
of processed data. It seems likely that the error rate will
be further reduced with more data. The personalized model
relying on the pseudo-ground truth (PERSP) is able to outper-
form the average-user model (AVG) after ∼ 70% of the data.
Please note that the models PERSP and AVG are the only
ones that can be applied in practice to perform online action
classification. The retrospective model AVGR is classifying
with delay and model PERS uses ground truth information
that is usually not available. Their curves are only shown
for analytical purposes. In particular, it can be seen that
the personalized models using real-ground truth information
(PERS) is able to deliver a similar performance as AVGR, but
it classifies the actions without delay. Hence, the potential of
personalization in this task seems to be sufficient to expect
that PERSP converges towards the performance of AVGR
with more data.
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TABLE II
THE RESULTS OF WELCH’S T-TEST COMPARING THE ERROR RATES OF

THE AVERAGE-USER MODEL AND THE PERSONALIZED ONE USING THE

PSEUDO-GROUND TRUTH IN THE TASK OF ONLINE ACTION

CLASSIFICATION. SIGNIFICANT DIFFERENCES ARE MARKED IN BOLD.
THE EXPERIMENTS WERE REPEATED 100 TIMES WITH RESHUFFLED

MOTION ORDER. THE DATA WAS SUBDIVIDED IN 10 CHRONOLOGICALLY

ORDERED PARTS AND THE TEST WAS PERFORMED FOR EACH OF THOSE.

Part PERSP AVG P-Value Better/Worse

1 0.447(±0.05) 0.899(±0.04) ∼ 0 worse
2 0.725(±0.04) 0.901(±0.04) 3.3E-224 worse
3 0.812(±0.04) 0.899(±0.04) 6.2E-107 worse
4 0.854(±0.04) 0.903(±0.04) 2.0E-48 worse
5 0.874(±0.04) 0.899(±0.04) 2.2E-14 worse
6 0.887(±0.04) 0.900(±0.04) 7.5E-05 worse
7 0.899(±0.03) 0.901(±0.04) 4.3E-01 worse
8 0.907(±0.03) 0.901(±0.04) 6.7E-02 better
9 0.909(±0.03) 0.899(±0.03) 1.0E-03 better

10 0.916(±0.03) 0.902(±0.03) 2.5E-06 better

We subdivided the data in 10 portions and tested the corre-
sponding error rates for significant differences between the
models AVG and PERSP. Concretely, we performed Welch’s
t-test for unequal variances [25] with α = 0.005. The alpha
value was chosen based on the Bonferroni correction [26]
to keep the probability of false positives below 5%. Table II
shows the results of the test for each portion of the data. The
error rates with corresponding standard deviations are listed
as well. The personalized model using the pseudo-ground
truth is significantly better than the average-user model
within the last 20% of the processed data. Hence, we can
conclude that the proposed approach yields a personalized
model on the basis of pseudo-ground truth that significantly
outperforms an average-user offline model, pre-trained on
real-ground truth.

D. Unsegmented motions

In practice, it is unrealistic to expect perfectly segmented
motions. Hence, we perform the same experiments but
assume to have no segmentation of the motions at all.
Concretely, the feature vectors are constructed independently
from the underlying duration of the motion classes, therefore,
they cover sometimes multiple and different motion classes.

1) Varying the length of encoded window: The impact of
varying the size of the encoded time window is illustrated
by the heatmap of Figure 6. As expected, a relatively small
window size of 1.3 s (in both directions) yields the best
compromise which is less than half the size yielding the best
performance in the segmented case. Since the classification
task is more challenging with unsegmented data, the error
rates are also distinctly higher.

2) Main Experiment: The model performances achieved
with the unsegmented motion data are depicted in Figure
7. The personalized model using the pseudo-ground truth
(PERSP) has a flatter learning curve and achieves towards
the end a similar performance as the average model. The
plausible explanation is that even though the retrospective
model AVGR yields also in this case a similar performance

Fig. 6: Error rates of varied length of encoded time-window
in the feature vector. The sweet spot of the hyperparameter
setting is clearly pronounced for unsegmented motions, as
too large horizons are detrimental.

Fig. 7: The learning curve of the personalized model using
the pseudo-ground truth is flatter for unsegmented data as
the pseudo-ground truth is less accurate, requiring more data
instances to converge. Therefore, more data is necessary to
evaluate whether a benefit can be achieved with the proposal.

advantage of ∼ 5% compared to AVG, it has in absolute
terms a higher error rate. Consequently, the pseudo ground-
truth is less accurate and the personalized model depending
on it PERSP requires more data instances to converge.
However, the course of the learning curve suggests that
PERSP likely outperforms the AVG model with additional
data.

The results in both scenarios underline the potential of
our approach, where the effectiveness was more pronounced
in the case of segmented data. As a segmentation of motion
data is usually beneficial in terms of the general classification
performance [27] it has even a higher value in combination
with our approach.

VI. CONCLUSION AND DISCUSSION

In this paper, we tackled the challenge of obtaining ground
truth information for personalized online learning. Con-
cretely, we proposed a novel approach to adapt a personalized
online model based on pseudo-ground truth information
that is provided by another offline model, classifying the
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sequences in retrospective. This strategy was applied for
the task of online action classification using segmented and
unsegmented motion data. Thereby, the approach was able
to outperform average-user offline models, pre-trained using
real-ground truth, with significance in case of segmented
motions. Without the segmentation the learning curve of the
model was flatter and it achieved the same performance as
the average-user model. However, the shape of the curve
suggests that it probably delivers a better performance with
additional motion data.
Our intuitive approach can be easily applied in practice
and does not require any ground-truth information during
runtime. The main conditions for the applicability of the pro-
posal is that personalization and classification in retrospective
provide a significant performance advantage over average-
user real-time classification. Please note, that the approach is
independent from the underlying learning algorithms. These
are interchangeable as long as the required conditions are
still met. For instance, end-to-end deep learning architec-
tures such as Residual Networks (ResNet) or Long Short-
term memorys (LSTM) [28], [29] could also be used as
offline models. However, we utilized the established Random
Forests as we aimed for similar online- and offline learning
architectures to isolate the benefits of personalization. Fur-
thermore, the dataset is rather small (altogether ∼ 90min
motion data) and prohibits the training of large networks
due to overfitting effects.

We are interested in extending the work in two directions.
First, we want to investigate whether our envisioned goal of
an alternately adaptation between system and user can be ob-
served in practice. In that regard, active learning approaches
could be used for ground-truth acquisition. Furthermore, we
want to explore different ways to combining average-user
models with personalized ones to get the best of both worlds,
in particular we aim for a higher robustness. For instance,
the “cold-start” of personalized models as they have initially
insufficient data could be avoided. Average-user models
could be used as fall-back whenever the performance of the
personalized model drops, potentially due to the intrinsically
higher volatility. Another promising direction to increase the
robustness is data augmentation [30].
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[6] M. Hasenjäger and H. Wersing, “Personalization in advanced driver
assistance systems and autonomous vehicles: A review,” in 2017 IEEE
20th International Conference on Intelligent Transportation Systems
(ITSC). IEEE, 2017, pp. 2205–2211.

[7] A. S. Das, M. Datar, A. Garg, and S. Rajaram, “Google news
personalization: scalable online collaborative filtering,” in Proceedings
of the 16th international conference on World Wide Web. ACM, 2007,
pp. 271–280.

[8] Y. Zhang, M. Chen, D. Huang, D. Wu, and Y. Li, “idoctor: Personal-
ized and professionalized medical recommendations based on hybrid
matrix factorization,” Future Generation Computer Systems, vol. 66,
pp. 30–35, 2017.

[9] M. F. Alhamid, M. Rawashdeh, H. Dong, M. A. Hossain, and
A. El Saddik, “Exploring latent preferences for context-aware per-
sonalized recommendation systems,” IEEE Transactions on Human-
Machine Systems, vol. 46, no. 4, pp. 615–623, 2016.

[10] J. Luo, A. Pronobis, B. Caputo, and P. Jensfelt, “Incremental learning
for place recognition in dynamic environments,” in 2007 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Oct 2007,
pp. 721–728.

[11] S. Amershi and M. Cakmak, “Power to the people: The role of humans
in interactive machine learning,” AI Magazine, December 2014.

[12] B. Settles, “Active learning literature survey,” University of Wisconsin-
Madison Department of Computer Sciences, Tech. Rep., 2009.

[13] J. Prakash and D. Nithya, “A survey on semi-supervised learning tech-
niques,” International Journal of Computer Trends and Technology,
vol. 8, 02 2014.

[14] Y. Li, C. Lan, J. Xing, W. Zeng, C. Yuan, and J. Liu, “Online human
action detection using joint classification-regression recurrent neural
networks,” in Computer Vision – ECCV 2016, B. Leibe, J. Matas,
N. Sebe, and M. Welling, Eds. Cham: Springer International
Publishing, 2016, pp. 203–220.

[15] V. Losing, B. Hammer, and H. Wersing, “KNN Classifier with Self
Adjusting Memory for Heterogeneous Concept Drift,” in 16th Inter-
national Conference on Data Mining (ICDM). IEEE, 2016.

[16] H. M. Gomes, A. Bifet, J. Read, J. P. Barddal, F. Enembreck,
B. Pfharinger, G. Holmes, and T. Abdessalem, “Adaptive random
forests for evolving data stream classification,” Machine Learning, vol.
106, no. 9, pp. 1469–1495, Oct 2017.

[17] D. Roetenberg, H. Luinge, and P. Slycke, “Xsens mvn: Full 6dof
human motion tracking using miniature inertial sensors,” vol. 3, 01
2009.

[18] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[19] A. Saffari, C. Leistner, J. Santner, M. Godec, and H. Bischof, “On-line
random forests,” in IEEE 12th International Conference on Computer
Vision Workshops (ICCV Workshops). IEEE, 2009, pp. 1393–1400.

[20] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, “Do
we need hundreds of classifiers to solve real world classification
problems,” J. Mach. Learn. Res, vol. 15, no. 1, pp. 3133–3181, 2014.

[21] V. Losing, B. Hammer, and H. Wersing, “Choosing the Best Algo-
rithm for an Incremental Learning Task,” in European Symposium on
Artificial Neural Networks (ESANN), 2016.

[22] U. M. Fayyad and K. B. Irani, “The attribute selection problem in
decision tree generation,” in AAAI, 1992, pp. 104–110.

[23] J. Tang, S. Alelyani, and H. Liu, “Feature selection for classification:
A review,” Data classification: Algorithms and applications, p. 37,
2014.

[24] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine transform,”
IEEE Transactions on Computers, vol. C-23, pp. 90–93, Jan 1974.

[25] G. D. Ruxton, “The unequal variance t-test is an underused alternative
to Student’s t-test and the MannWhitney U test,” Behavioral Ecology,
vol. 17, no. 4, pp. 688–690, 05 2006.

[26] C. E. Bonferroni, Teoria statistica delle classi e calcolo delle proba-
bilita. Libreria internazionale Seeber, 1936.

[27] E. Keogh, S. Chu, D. Hart, and M. Pazzani, “Segmenting time series: A
survey and novel approach,” in Data mining in time series databases.
World Scientific, 2004, pp. 1–21.

[28] Z. Wang, W. Yan, and T. Oates, “Time series classification from scratch
with deep neural networks: A strong baseline,” in International Joint
Conference on Neural Networks (IJCNN), May 2017, pp. 1578–1585.

[29] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[30] X. Ren, J. Luo, E. Solowjow, J. A. Ojea, A. Gupta, A. Tamar, and
P. Abbeel, “Domain randomization for active pose estimation,” in 2019
International Conference on Robotics and Automation (ICRA). IEEE,
2019, pp. 7228–7234.

8969


