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Abstract— This paper presents a novel Bayesian-based con-
troller for snake robots in cluttered environment. It extends the
conventional shape-based compliant control into statistical field
providing an explicit mathematical formulation with Bayesian
network. A sequential density propagation rule is derived by
introducing several probability densities in a unified framework.
Specifically, two input influence densities are proposed to
model the cumulative effect of various external forces that the
snake robot undergoes. Moreover, the measurement likelihood
model is exploited to give a more robust closed-loop feedback.
Overall, the proposed approach provides an innovative way to
handle challenging tasks of snake robot control in complicated
environment. Experimental results have been demonstrated for
both simulation and real-world data.

I. INTRODUCTION

Snake robot received a significant amount of attention in
recent years motivated by its wide applications [1]. However,
its high redundant structure makes snake robot control still
very challenging [2]. Many approaches have been studied
to circumvent the problems inherent in this task. Most
earlier efforts studied the biomechanics of biological snakes.
Hirose proposed the serpenoid curve in [1]. Ma studied the
serpentine curve in [3]. Sophisticated control methods have
been adopted for snake robot applications using techniques
such as Central Pattern Generator (CPG) [2] and model-
based methods [4]. However, these approaches usually fail
when snake robots move in unstructured environment or
present collisions with obstacles.

Different methods have been studied for the locomotion
of snake robots exploiting contact with obstacles. A hybrid
model is proposed by Transeth et al. using the dynamics
of snake robots and the contact force with obstacles in [5].
Kano et al. [6] investigated a decentralized control method
with local reflexes from contact sensors. Many methods for
obstacle-aided snake robots rely on accurate modeling and
sensing assumptions, where the number, convexity of colli-
sion points and the friction models are usually predefined.
These assumptions limit their performance in unstructured
environments where constraints are commonly hard to fore-
know and difficult to model. In order to simulate the biologic
interaction strategy of snakes with obstacles and exploit
machine learning techniques, much research considers neural
network based methods [2]. This notion is carried further in
the work of Sartoretti et al. [7] where the A3C algorithm is
used by a trained agent. Although this approach provides a
promising direction, it does not give an explicit mathematical
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model of the interaction with environment yet. Moreover,
due to the limitation of supervised learning method, it highly
depends on training data and may not deal with unlearned
situation well.

Various approaches have been proposed for obstacle avoid-
ance of snake robots. Wu and Ma presented a neurally
controlled steering method for collision free behavior of a
snake robot in [8]. Tanaka et al. [4] presented a range-
sensor-based method for semiautonomous whole body col-
lision avoidance and discussed the self-collision avoidance.
Recently, an intuitive and computationally effective approach
to snake robots addressing several difficulties inherent in
this complex task is based on a shape-based compliant
controller [9][10]. Although this kind of methods can handle
the external interaction in principle, they require to precisely
measure the forces or torques and have a good estimation
of the controller’s gain matrices, which limits their applica-
tion especially for unknown clutter environment where the
dynamics may be varying and hard to model accurately.

In this paper, we propose a Bayesian network based
controller for snake robots. It unifies several existing state-of-
the-art approaches into a consistent formulation. Specifically,
a novel conditional density propagation scheme has been
derived for snake robot control in unstructured environment
with perturbations. Moreover, by estimating the input influ-
ence density, measurement likelihood, and the state transition
in a sequential importance sampling implementation, we
explicitly handle the obstacle interaction and shape variation
problems in an innovative way.

II. RELATED WORK

We first briefly review the related work of shape-based
compliance control and statistical process control.

A. Shape-Based Compliant Control for Snake Robot

Shape-based compliant control adopts an admittance con-
troller to change the snake robot’s shape parameters by the
external force Ft [10]. For example, if we define βt =
(At, γt)

T where A and γ are the amplitude and angular offset
respectively in the serpenoid curve model [1], the admittance
controller is given by

Mβ̈t +Bβ̇t +Kβt = Ft, (1)

where M,B,K ∈ R2×2 represent the effective mass, damp-
ing, and spring constant matrices, respectively. By embed-
ding the serpenoid model inside the shape function and
adjusting shape parameters through the above controller, this
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method can effectively change different portions of the snake
robot’s body responding to meeting obstacles.

Several challenges remain open for the above controller: 1)
The optimal gain matrices M,B,K are commonly difficult
to be estimated for a snake robot; 2) The external force Ft

is hard to be accurately measured in collisions since it is
fluctuating in terms of force direction, angle, magnitude,
etc.; 3) It does not have an observer design even though
the external force may implicitly change the snake robot’s
posture. Therefore, the controller state could not be estimated
accurately. This inspires us to propose a more sophisticated
shape-based control formulation.

B. Statistical Process Modeling for Snake Robot

Many reported controllers such as in [4][9][10] are all
deterministic systems. When sensors provide noisy stochastic
measurements and input signal has disturbance, the state
can only be observed partially. Generally speaking, the
control problem under uncertainties has to be formulated as
a stochastic problem with noisy observations. Deterministic
mathematical modeling of dynamic systems is usually im-
perfect, and a statistical approach is necessary to estimate
unknown parameters and to evaluate their accuracies.

Kalman filtering has been widely used for solving stochas-
tic problems [11]. Rollinson et al. [12] applied Kalman filter
to state estimation of snake robots. However, conventional
Kalman filters take a Gaussian assumption for the distribu-
tion of noise, which is not held in many applications. More
sophisticated statistical methods such as Bayesian network
[13] have been studied for different aspects of dynamic robot
systems such as navigation and control. Nevertheless, to the
best of our knowledge, not enough work has been done for
snake robot using Bayesian network in stochastic field yet.

III. STOCHASTIC SHAPE-BASED BAYESIAN
CONTROL

In this section, we propose a novel Bayesian formulation
for snake robot control.

A. Shape-Based Bayesian Network Modeling for Snake
Robot

An articulated snake robot with six modules can be
represented by a Bayesian network [13] such as shown in
Fig. 1. It has two layers: the hidden state layer (circle nodes)
and the measurement layer (square nodes). Each circle node
corresponds to a module of the snake. The undirected links
represent physical constraints among different modules. Each
individual module is associated with its measurement. The
directed link from a module’s state to its associated measure-
ment represents the local measurement likelihood.

In order to keep the serpenoid shape [1] for the snake
robot, a joint state representation is adopted. We denote
the state at time t by xt = (x1t , . . . , xit, . . . , xIt ), where
I is the total number of modules, i the module index.
Specifically, since the snake robot implements the serpenoid
shape function similar as [9] for a better comparison, the
state is chosen as xi

t = (Ai
t, γ

i
t) where i = 1, . . . , I is the

Fig. 1. Bayesian network for a six-modular snake robot.

Fig. 2. Dynamical modeling for snake robot locomotion.

module index, A is the amplitude, γ is the angular offset of
serpenoid curve [1]. When these parameters are changing,
different shapes would be generated. Moreover, we denote
the measurement of xt by qt = (Ãt, γ̃t) which is estimated
by a camera based object detector in this work, the set of all
history states up to time t by x0:t where x0 is the initialization
prior, the set of all measurements up to time t by q1:t.

Considering the locomotion problem for a snake robot,
we further accommodate the state transition by a dynamical
Bayesian network such as shown in Fig. 2. It contains
three consecutive time slices. The directed link between
consecutive states represents the state transition which is
assumed as a Markov chain. An additional layer is introduced
to represent the input ut, which is the virtual accumulative
force generated by environmental objects such as targets and
obstacles during interaction. Similarly, we denote the set of
all inputs up to time t by u0:t. By applying the Separation
Theorem [13], the following Markov Properties, i.e., condi-
tional independence properties can be easily verified from
Fig. 2:

p(ut|u0:t−1, x0:t+1,q1:t) = p(ut|xt+1, xt) (2a)
p(qt|u0:t−1, x0:t+1,q1:t−1) = p(qt|xt) (2b)
p(xt+1|u0:t−1, x0:t) = p(xt+1|xt) (2c)

B. Bayesian Conditional Density Propagation

Dynamic Bayesian network shown above has advantages
for statistical analysis comparing with Kalman filters and
difference equations. Specifically, it provides more flexible
potential for modeling stochastic process. In order to design
a controller, we investigate the prediction problem in this
section. This can be achieved by inferring the joint posterior
p(u0:t, x0:t+1|q1:t), which captures all the history of evolu-
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tion of uncertainties:

p(u0:t, x0:t+1|q1:t)

= p(ut|u0:t−1, x0:t+1,q1:t)p(u0:t−1, x0:t+1|q1:t) (3)
= p(ut|xt+1, xt)p(u0:t−1, x0:t+1|q1:t) (4)

=
p(ut|xt+1, xt)p(qt|u0:t−1, x0:t+1,q1:t−1)

p(qt|q1:t−1)

· p(u0:t−1, x0:t+1|q1:t−1) (5)

=
p(ut|xt+1, xt)p(qt|xt)p(xt+1|u0:t−1, x0:t)

p(qt|q1:t−1)

· p(u0:t−1, x0:t|q1:t−1) (6)

=
p(ut|xt+1, xt)p(qt|xt)p(xt+1|xt)

p(qt|q1:t−1)

· p(u0:t−1, x0:t|q1:t−1) (7)
= ctp(ut|xt+1, xt)p(qt|xt)p(xt+1|xt)
· p(u0:t−1, x0:t|q1:t−1). (8)

In (4), the Markov property (2a) is used. In (6), we apply
the Markov property (2b). In (7), we adopt the property (2c).
The denominator in (7) can be regarded as a normalization
constant since it is not related to the state.

The above Bayesian stochastic formulation explicitly mod-
els the physical interaction between the snake robot and
its surrounding environment through observation measure-
ment. Clearly, the posterior at time t is affected by four
factors: (1) the input influence density p(ut|xt+1, xt); (2)
the measurement likelihood p(qt|xt); (3) the state transition
density p(xt+1|xt); (4) the posterior p(u0:t−1, x0:t|q1:t−1) at
the previous time t− 1.

IV. DENSITY MODELING AND SEQUENTIAL
IMPORTANCE SAMPLING IMPLEMENTATION

In order to estimate the posterior derived in the above
section, we use the sequential importance sampling (SIS)
[14] as a paradigm. Other density estimation methods can
be used instead. The basic idea of SIS approximation [14]
is to use a weighted sample set {xn

0:t, w
n
t }

Ns
n=1 to estimate

the posterior density, where {xn
0:t, n = 1, . . . , ns, . . . , Ns}

are the samples, {wn
t , n = 1, . . . , ns, . . . , Ns} the associated

normalized weights, and
∑

n w
n
t = 1. According to the

importance sampling theory [14], the samples xn0:t can be
generated from an importance density f(·) with associated
importance weights:

wn
t ∝

p(u0:t, xn0:t+1|q1:t)

f(·)
. (9)

For the sequential case, if the importance density f(·) is
chosen to factorize as,

f(u0:t, x0:t+1|q1:t)

= f(ut, xt+1|u0:t−1, x0:t,q1:t)f(u0:t−1, x0:t|q1:t)

= f(ut, xt+1|xt)f(u0:t−1, x0:t|q1:t−1). (10)

where the Markov properties f(u0:t−1, x0:t|q1:t) =
f(u0:t−1, x0:t|q1:t−1) and f(ut, xt+1|u0:t−1, x0:t,q1:t) =

f(ut, xt+1|xt) from Fig. 2 are applied. Then by substituting
(8) and (10) into (9), we have

wn
t ∝ wn

t−1

p(ut|xnt+1, xnt )p(qt|xn
t )p(xnt+1|xnt )

f(·)
. (11)

The dynamics p(xt+1|xt) can be estimated using a ran-
dom walk model. Estimation of the input influence density
p(ut|xt+1, xt), the measurement likelihood p(qt|xt) and the
choice of the importance density f(ut, xt+1|xt) are not trivial
and will be discussed in the following subsections.

A. Input Influence Model

The input influence density p(ut|xt+1, xt) models the in-
teraction between environmental inputs and predicted states.
Estimation of this density should consider different appli-
cations and is usually critical in practical implementation.
Kelasidi et al. [15] adopted an Artificial Potential Field (APF)
model for snake robot locomotion. Inspired by this method,
we propose two efficient input influence models dealing
with target seeking and obstacle interaction. Since these two
different interactions are independent, we have,

p(ut|xt+1, xt) = p(ua,t|xt+1, xt)p(ur,t|xt+1, xt) (12)

where p(ua,t|xt+1, xt) models the influence by virtual attrac-
tion force from the mission target, p(ur,t|xt+1, xt) formulates
influence of the accumulative repulsion force incurred by
obstacles. The formulation of these densities is presented as
follows.

1) Target Influence Model: In a target searching task,
the objective is to reach the goal of mission. Therefore, an
attraction potential model can be assumed to direct the robot
for searching an optimal path [15]. Similarly, we define the
attraction potential function for sample xnt+1 as,

p(ua,t|xnt+1, x
n
t ) =

1

αa
exp

{
−
d2a,n,t
σ2
a

}
(13)

where αa is a constant, σa is a prior constant characteriz-
ing the maximal distance for attraction. da,n,t denotes the
distance to the goal, for instance, it can be a Euclidean
distance da,n,t = ‖ua,t−∆xn

t+1‖, where ∆xnt+1 = xnt+1−xnt .
Different with the conventional APF model [15] where the
goal is static, the target in the proposed model can change
or move during the snake robot’s locomotion.

2) Obstacle Influence Model: A repulsion potential model
is commonly adopted for snake robot control with environ-
ment interactions [15]. Similarly, we denote the repulsive
potential function for sample xnt+1 by,

p(ur,t|xnt+1, x
n
t ) = 1− 1

αr
exp

{
−
d2r,n,t
σ2
r

}
(14)

where αr is a normalization constant, σr is a prior constant
characterizing the allowed maximal repulsion distance, dr,n,t
is the distance between xnt+1 and the obstacle ur,t, for exam-
ple, it can be a Euclidean distance dr,n,t = ‖ur,t −∆xn

t+1‖
where ∆xnt+1 = xnt+1 − xn

t . Different with the existing APF
method in [15] where all obstacles are handled together, only
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Fig. 3. The input influence potential field with obstacles and one target.

neighboring obstacles are computed based on necessities for
the sample xn

t+1 , which makes the model more practical for
real-world applications since the total number of obstacles
and their distribution are hard to predefine in advance and
may be dynamically changing. Moreover, this scheme is also
effective to handle the local optimum problem when comput-
ing the potential field since only neighbouring obstacles are
considered.

During the navigation in a cluttered environment, the snake
robot moves in an area with potentials created by the target
and obstacles. Fig. 3 illustrates an example of such kind of
input influence potential field for unstructured terrain with
one target and six obstacles. As we can see, it looks like
a big slope where the target locates at the bottom. The
influence of target attraction is global while the obstacles’
influence is local. Each obstacle plays a role as a hill. Then
the locomotion of snake robot is like passing through a hilly
land until reaching the target. Such kind of potential field is
not static but dynamically updating during the whole journey.

B. Measurement Likelihood Model

Benefiting from the serpenoid function embedded in the
state, the snake robot can generate a cyclic gait and thus
move forward with the state transition. Exploiting the interac-
tion models discussed above, the snake robot can respond to
the external forces in cluttered terrain and change its motion
status. However, without an observer design, the snake robot
has no estimation of states, making the system reliability
low. The measurement likelihood density p(qt|xt) in the
proposed framework estimates the uncertainties between
snake robot’s current state and measurement, which can
serve as a feedback and help to solve the above problem.
However, how to model this density is critical but also
challenging. The inspiration for developing this model was
based on graceful shape deformation of biological snakes
moving through unstructured terrains. When encountering
environmental disturbances, snakes can make fast transient
responses but seldom overreact mainly because they know
their internal shape status and tend to make any change
smoothly. The objective of an effective observation feedback

TABLE I
BRIEF DESCRIPTION OF BNC ALGORITHM

◦ j = 0, Sampling xnt+1 from f(ut, xt+1|xt)
◦ Initial Weighting, wn

t+1 ∼ xnt+1

◦ Initial Predication, x̂t+1,j=
∑Ns

n=1 w
n
t+1 · xnt+1

◦ Loop j = 1 : J # Re-sampling Scheme
− Input Influence Weighting, p1(·)
− Measurement Likelihood Weighting, p2(·)
− Updating Weights, wn

t+1 = wn
t+1 · p1(·) · p2(·)

− Normalizing Weights
− Updating Predication, x̂t+1,j=

∑Ns
n=1 w

n
t+1 · xnt+1

◦ End Loop j

model should be similar to those observed in the biological
organisms, which can be achieved by a measurement likeli-
hood function for sample xn

t ,

p(qt|xnt ) =
1

αm
exp

{
−
d2m,n,t

σ2
m

}
(15)

where αm is a normalization constant, σm is a prior constant
characterizing the maximal effective distance, dm,n,t is the
distance between xnt+1 and the corresponding measurement
qt, for example, an Bhattacharyya distance is accepted in
our implementation. This model provides the system with
an ability to simulate the shape deformation observed in real
snakes when responding to environmental perturbations.

Overall, intuitively speaking, the proposed framework can
achieve robust control for snake robot by four reasons:
1) The serpenoid curve model guarantees the snake robot
moving in a rhythmic gait; 2) The state transition density
introduces motion randomness and thus endows the robot’s
locomotion with more possibilities; 3) The input influence
stimulates the motion variation and shape deformation; 4)
The measurement likelihood provides a closed-loop feedback
and thus retains the transformation in a fast and smooth way.
All of these four factors are indispensable to achieve a robust
control for snake robots. When no target or obstacle appears,
the input influence density will be uniformly distributed. If
the state transition also adopts a uniform distribution, the
controller will degrade to a simple serpenoid curve model.

C. Importance Density
The efficiency of a sequential importance sampling based

approach is strongly dependent on the selected importance
density f(·). When f(·) is close to the true posterior,
the samples are more effective. A natural choice of the
importance density is the state dynamics p(xt+1|xt). In our
experiments, we choose this common choice for simplicity.

V. EXPERIMENTAL RESULTS AND ANALYSIS
The proposed Bayesian-Network-based Controller (BNC)

was compared with the Shape-based Compliant Controller
(SCC) [10] on both simulation and real world data. Table
I presents a brief description of the proposed algorithm for
one time slot. Five hundred samples were used to predict the
joint state density in our experiments.
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Fig. 4. Simulation results. The black curve is the optimal path. The white
one is achieved by BNC. The blue dash curve is using SCC.

A. Simulation Results

We designed a simulation in Matlab for a thorough com-
parison. Fig. 4 shows the experimental scenario with one tar-
get and thirteen obstacles, which are all randomly arranged.
A potential field is generated by calculating the proposed
input influence models. Although sharing similarities with
APF [15], we only consider the obstacle in the neighbor
of snake robot during the locomotion. By doing this, the
local optimum problem commonly annoying in APF-type
methods could be successfully avoided. Three trajectories are
illustrated in the Fig. 4. The blue dash curve is generated
by the head of a snake robot using SCC. The white solid
curve shows the results of BNC. The black solid curve is an
optimal path computed by a gradient-descent algorithm based
on the input influence potential field. In experiments, we find
that the performance of SCC is sensitive to the initialization
status. Different initial direction and position may lead to
various trajectories. As illustrated in Fig. 4, the SCC method
falsely misses the target direction in the middle and runs
outside the field. Although the external forces are partially
modeled, the collision is still uncontrollable in terms of
contacting direction, degree, and the phase of snake robot’s
serpenoid gait. However, benefiting from the closed-loop
design, BNC can achieve much more robust performance.
As long as the target can be detected, the snake robot tends
to move for it. When it approaches to an obstacle, the effect
of repulsion force will be triggered. The sample close to the
obstacle will have a smaller weight while the sample away
to the obstacle will be given a larger weight. Such a reward-
far-punish-close scheme will deform the snake robot’s shape
and motion curve.

Fig. 5 shows the RSME of SCC and BNC on ten tests
with the same target and similar initial position. The curves
are calculated by computing summation of the difference
between each method’s trajectory and the optimal path. It
can be seen that BNC is more robust. The errors of BNC
are caused by three factors: 1) Due to the different initial
status, it may need an adjustment process at the beginning;
2) The uncertainty may cause a bias during sharp turnings;

Fig. 5. Comparison of Root-Mean-Square-Error (RMSE) using SCC (blue
dash curve) and BNC (red solid curve).

3) The environmental friction and interference may further
generate additional deviations. These kinds of uncertainties
are all unpredictable in the real-world applications but need
to be considered. This is why a stochastic framework like
the proposed BNC is desirable.

B. Real-World Data

A snake robot similar as reported in [16] was used to
implement the proposed BNC method. It has five actuators
chained together in a serial configuration. The links are
composed of 3D-printed connection blocks and separated by
DYNAMIXEL RX-24F servo motors. A single free wheel
with a rubber cover is mounted at the bottom of each link.
The robot was controlled by signals sent from a Linux
computer through an RS-485 communication link. Similar
as [10], an overhead camera was used to monitor the scene.
Different colorful tags were used to label objects for simplic-
ity, specifically, red for target, blue for obstacle, yellow for
robot head, and green for body module. A learning based
video detector was exploited to find the position of these
objects in real-time. Then, the input influence density and
measurement likelihood could be dynamically calculated,
specifically, measurement qt was estimated by a link model
[2] between centers of adjacent modules.

Fig. 6 illustrates the performance using both SCC and the
proposed BNC in a real-world test, where one target and
more than twenty obstacles are randomly set in the scene.
It challenges many algorithms because of the presence of
moving targets and obstacles. SCC (1st row) suffered from
the unexpected collision problem during the interaction with
obstacles. The reason is mainly because of the complexity
of environmental interactions. For example, the friction situ-
ation, collision angle, and strength of contacting force are all
not handled explicitly in the controller. In the experiments,
we found that the controller was sensitive to the initial pose.
Moreover, although the shape was deformed by portions, it
could not respond to moving obstacles in time due to lack
of a closed-loop design. Furthermore, without a target influ-
ence model, it usually missed the desirable direction after
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Fig. 6. Comparison of SCC (1st row), and the proposed BNC (2nd row) for unstructured environments.

spontaneous collision with obstacles and finally went out of
the scene quickly. However, the proposed BNC (2nd row)
performed superiorly even with moving obstacles and targets.
In most situations with different initialization status, the
proposed BNC method presented an impressive performance.
Although a joint state space is adopted, the snake robot’s
shape is not exclusively changed as a whole. On the contrary,
different portions can be flexibly stimulated by external
inputs similar as [7]. Specifically, due to the various position
along a snake robot, each module may receive different
interaction forces even when reaching to the same obstacle.
In such a situation, the distances defined in input influence
models are quite different among individual modules and
thus play an important role to change the snake robot’s
shape. Thus, the proposed framework endows the entire body
with a particular ability to deform locally by environmental
features. Compared with the deterministic controller such
as SCC, the snake robot’s locomotion using BNC is more
active and agile. The reason may be the stochastic modeling
inherent in the non-Gaussian density propagation. Benefiting
from keeping multi-hypotheses of both motion and shape
variations, the snake robot can respond to instant moving
target and obstacles quickly.

VI. CONCLUSIONS
We have presented a novel Bayesian-based controller for

snake robots by modeling the interaction with environmental
objects using probability density propagation. Preliminary
experimental results have demonstrated promising perfor-
mance in unstructured circumstances. For the future work,
we would like to investigate more sophisticated interaction
models and extend the proposed framework to more prob-
lems such as simultaneous localization and mapping.
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