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Abstract— When executing a certain task, human beings can
choose or make an appropriate tool to achieve the task. This
research especially addresses the optimization of tool shape for
robotic tool-use. We propose a method in which a robot obtains
an optimized tool shape, tool trajectory, or both, depending on
a given task. The feature of our method is that a transition
of the task state when the robot moves a certain tool along
a certain trajectory is represented by a deep neural network.
We applied this method to object manipulation tasks on a 2D
plane, and verified that appropriate tool shapes are generated
by using this novel method.

I. INTRODUCTION

Tool-use is one of the fundamental abilities of human
beings. When executing a task, human beings can choose
or make an appropriate tool to achieve the task. For a robot
to work in a human environment, combining existing tools
or making new tools is necessary to expand its capability.
In this study, we mainly focus on the optimization of tool
shape and tool trajectory, as a foundation of tool making.

Robotic tool-use has been studied in various topics: tool
recognition [1], [2], tool understanding [3], [4], tool choice
[5], [6], and motion generation with tool-use [7]–[9]. How-
ever, there have been few studies about tool-making or
making a new appropriate tool for a given task. Nair, et al.
developed methods to construct a new tool by combining
two existing tools using geometric reasoning [10], [11].
Wicaksono, et al. developed frameworks of tool creation
as an extension of tool-use learning [12], [13]. However,
because [10], [11] can generate only tools expressed by
the combination of two existing tools and [12], [13] can
generate only tools similar to a reference tool due to random
generation of tools fulfilling many hypotheses (e.g. a hook-
like tool), various free forms of tool shapes cannot be
handled. Also, because [12], [13] must be tested by the actual
robot to choose the best tool, the optimization of tool shape
takes too much time.

Apart from robotic tool-use, an optimization method of
robot design parameters such as link length and actuator
placement has been developed [14]. Also, some studies have
jointly optimized the robot design parameters and control
scheme using a genetic algorithm [15], [16] or reinforcement
learning [17], in simulation environment. While these studies
are similar to the scenario of tool making, there are two
problems in common. First, these robot designs (e.g. link
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Fig. 1: Functional diagram of our method where a tool shape
and trajectory are optimized for a given task from a current
and target task state

length and actuator placement) are manually parameterized
and various free forms cannot be handled. To appropriately
parameterize the design, prior knowledge of human experts
is necessary. Second, experiments of almost all previous
works are conducted in simulation environment. This is
because we must move the robot to obtain evaluation value
in the process of optimization and it takes too much time in
the actual environment. Also, these studies cannot consider
the characteristics of the actual environment, e.g. friction,
hysteresis, and robot model error.

Our contributions of this study are as below,
• We use an image to represent a tool shape. A tool

shape can be easily converted to an image, and we
can uniformly handle various tool shapes without prior
knowledge.

• All experiments including evaluations are conducted in
the actual environment. By acquiring a tool-use model
using the actual robot data of random movements, the
tool shape is directly optimized without evaluating the
movements of the actual robot.

As shown in Fig. 1, this study simultaneously calculates
an optimized tool shape and trajectory for a given task. A
transition of the task state when a robot moves a certain tool
along a certain trajectory is represented by a deep neural
network. An optimized tool shape, tool trajectory, or both for
a target task, can be obtained by using the backpropagation
technique [18] of the neural network. Although this method
includes motion trajectory optimization, we mainly put stress
on tool shape optimization. We conduct experiments using
the actual robot on a 2D plane to verify the effectiveness of
this study.

II. TOOL SHAPE AND TRAJECTORY OPTIMIZATION
NETWORK

In this study, we represent a transition of task state,
when using a given tool shape and trajectory, by a neural
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Fig. 2: Network structure of the proposed Tool-Net and
optimization procedure of tool shape and trajectory

network. We call this network “Tool Shape and Trajectory
Optimization Network (Tool-Net)”.

In the following sections, we assume that the robot moves
on a 2D plane and the task is an object manipulation task,
for simplicity. In Section IV, we will discuss extensions of
our method to a robot that moves in 3D space and other
kinds of tasks.

A. Network Structure of Tool-Net

The network structure of Tool-Net is shown in Fig. 2. This
network is represented by the equation below,

spredicted = f(scurrent ,t,u) (1)

where scurrent is a current task state, t is a tool shape, u
is a tool trajectory, spredicted is a predicted task state after
moving the robot using u and t, and f represents Tool-Net.
f is trained, and t and u are optimized when given a target
task state starget . Because we handle object manipulation
tasks in this study, we use a binarized image as shown in
Fig. 1, which can flexibly express the object position and
posture, as task state s. We also use a binarized image,
which has high degrees of freedom, as tool image t. In
binarized images, the background color is black (its value
is 0), and the tool and manipulated object color is white (its
value is 1). Regarding tool trajectory, we assume quasi-static
movement and constant joint velocity in this study, and so
we represent u as (θT

start ,θ
T
end)

T . θ{start,end} is the starting or
ending joint angles of the robot, and the whole trajectory is
the trajectory that interpolates these joint angles linearly by
constant velocity.

In detail, scurrent and t are inputted through convolutional
layers and concatenated with u, and spredicted is outputted
through deconvolutional layers.

B. Data Collection for Tool-Net

The procedures to collect data for training of Tool-Net are
as below.

(a) Initialize the robot posture and attach a randomly
generated tool to the manipulator tip

(b) Obtain the tool shape image t
(c) Set θstart randomly and move the robot

Tool Image
Task Image

Object
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𝒙

𝒚

Fig. 3: The settings of the robot, task state, and tool state

(d) Randomly place an object
(e) Obtain the task state image sstart
(f) Set θend randomly and move the robot
(g) Obtain the task state image send
(h) Repeat (c) – (g), collect the data, and go back to (a)

after the conditions (described below) are satisfied
In (a), the joint angle of the robot is initialized to 0.

We define the joint angles as shown in Fig. 3, and so the
initialized posture is straightly aligned. To prepare various
tool shapes to be attached to the robot, we make tools
randomly by hand with a metal wire, which will be explained
in Section III-A. 3D printing or clay modeling are also
applicable for the purpose.

In (c) and (f), when the robot is randomly moved, the
limit of θmin ≤ θ{start,end} ≤ θmax is set (θ{min,max} is the
lower or upper limit of joint angles). Also, because the
robot hardly moves when θend is close to θstart , we set the
limit of ||θstart−θend ||1 > θthre when randomly choosing the
θ{start,end} (|| · ||1 expresses L1 norm).

In (h), we use a sampling technique to balance changed
samples and unchanged samples. A changed sample means
that the robot moves the target object, and an unchanged
sample means that the robot does not touch the target
object. Due to the random trajectory, we get more unchanged
samples than changed samples. We use symmetric chamfer
distance dcham f er [19] to distinguish changed or unchanged
samples as below,

dcham f er(s1,s2) = ∑(s1 ·DT(s2)+s2 ·DT(s1)) (2)

where s1, s2 are images with the same size, DT (Distance
Transform) is an image expressing the distance to the
nearest white pixel at each pixel, and the unit of dcham f er
is [px]. When dcham f er(sstart ,send) ≥ dthre, it is classified
as a changed sample. For each tool, we collect Cchanged
changed samples and Cunchanged unchanged samples into a
dataset (C{changed,unchanged} is the number of samples). After
obtaining all these data, we go back to procedure (a) with a
new tool. By repeating these procedures, we finally construct
a dataset for the training of Tool-Net.

When constructing a dataset, we augment it at the same
time. When executing the procedures (c) – (g), we collect not
only (sstart , send , t, (θT

start ,θ
T
end)

T ) but also s and θ at all
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Algorithm 1 Add noise to tool image t

1: function ADDNOISETOTOOL(t)
2: t′← t
3: cadd ← 0
4: while cadd <Cnoise

add do
5: p = ChooseRandomPixel(t)
6: cad jacent = CountAdjacentWhite(t, p)
7: if IsBlack(t, p) and cad jacent > 0 then
8: ToWhite(t′, p)
9: cadd = cadd +1

10: end if
11: end while
12: while cdel <Cnoise

del do
13: p = ChooseRandomPixel(t)
14: if IsWhite(t, p) then
15: ToBlack(t′, p)
16: cdel = cdel +1
17: end if
18: end while
19: return t′

20: end function

frames. Then, we randomly choose frame indices F{ f rom,to}
(Ff rom < Fto) from the consecutively collected data, and add
Cseq data (s f rom, sto, t, (θT

f rom,θ
T
to)

T ) into the dataset (Cseq is
the number of the data). {s,θ}{ f rom,to} is s or θ at the frame
of Ff rom or Fto. When defining the arrangement of the robot
and task image as shown in Fig. 3, we can also generate
a mirrored data of (Mirror(s{start, f rom}), Mirror(s{end,to}),
Mirror(t), −u) (Mirror expresses a mirrored image). There-
fore, we finally obtain 2(1+Cseq) data: (sinitial , s f inal , t, u).

In our experiments, we set θmin = −45 [deg], θmax = 45
[deg] regarding each actuator, θthre = 45 [deg], dcham f er =
70.0 [px], Cchanged = 10, Cunchanged = 5, and Cseq = 24.

C. Training Phase of Tool-Net

We preprocess the obtained dataset (sinitial , s f inal , t, u)
and train Tool-Net. This preprocess makes the training result
robust against noise and displacement of pixels.

First, we augment tool image data t by adding
noise. We show how to add noise in Alg. 1. In
Alg. 1, ChooseRandomPixel(image) is the function
which randomly extracts one pixel from image.
CountAdjacentWhite(image, pixel) is the function which
counts the number of white pixels among 4 adjacent pixels
to the pixel of image. {ToWhite, ToBlack}(image, pixel)
is the function which makes the pixel of image {white,
black}. {IsWhite, IsBlack}(image, pixel) is the function
which judges whether the pixel in image is {white, black}.
t′ is t with noise. Cnoise

add , Cnoise
del are constant values. Line

4–11 of Alg. 1 express that we randomly make the black
pixel white when its adjacent pixels include at least one
white pixel. Line 12–18 of Alg. 1 express that we randomly
make the white pixel black.

Second, to make Tool-Net robust against the displacement
of pixels, we blur the task state image s f inal , as shown below,

s′f inal = 1.0− tanh(Cblur ·DT(1−s f inal)) (3)

where Cblur is a constant value. The smaller Cblur is, the more
the image is blurred.

Using s′f inal and t′, we train Tool-Net with the loss L
shown below, by setting the number of epochs as Cepoch and
batch size as Ctrain

batch,

spredicted = f(sinitial ,t
′,u) (4)

L = MSE(spredicted ,s
′
f inal) (5)

where MSE expresses mean squared error.
In the following experiments, we set Cblur = 0.2, Cnoise

add =
30, Cnoise

del = 30, Ctrain
batch = 100, and Cepoch = 300.

D. Optimization Phase of Tool-Net

We will explain the optimization procedures of tool shape
and trajectory using trained Tool-Net. The procedures corre-
sponding to Fig. 2 are as below.

(a) Obtain the current task state scurrent and target task
state starget

(b) Generate the initial tool shape and trajectory {t,u}init
before optimization

(c) Calculate loss of MSE(f(scurrent ,tinit ,uinit),s
′
target)

(d) Update {t,u}init through backpropagation
(e) Repeat (c) and (d) Citer times
In (b), regarding tinit , we randomly extract Coptimize

batch tools
from the dataset constructed in Section II-B (Coptimize

batch is the
number of the batch), and apply AddNoiseToTool in Alg. 1
to each tool. Regarding uinit , we randomly generate Coptimize

batch
tool trajectories fulfilling the limit of umin≤u≤umax. Thus,
we construct a batch with Coptimize

batch samples of tinit and uinit .
In (c), we calculate L =MSE(f(scurrent ,tinit ,uinit),s

′
target)

regarding each data in the batch (s′target is starget blurred by
Eq. 3).

In (d), we backpropagate L and optimize tinit and uinit for
each data. First, regarding the optimization of tool trajectory,
we optimize uinit like in [20], [21], as below,

gcontrol = dL/duinit

uinit ← uinit − γgcontrol/||gcontrol ||2 (6)

where || · ||2 expresses L2 norm, and γ is an update rate.
Second, regarding the optimization of tool shape, we

change the values of pixels according to the gradient gtool =
dL/dtinit . To decrease L, the black pixels with negative
gradients should be changed to white, and the white pixels
with positive gradients should be changed to black. However,
if all pixels are changed according to the gradient, an
appropriate image for tool shape cannot be obtained due to
sporadic pixels. Also, white pixels sometimes concentrate in
small areas. To solve these problems, we optimize tool shape
by focusing on adjacent pixels, as shown in Alg. 2. In Alg.
2, {IsPos, IsNeg}Grad(grad, pixel) is the function which
judges whether the gradient grad of pixel is {positive, neg-
ative}. GetGrad(grad, pixel) is the function which extracts
grad of pixel. {ExtractFront, ExtractBack}(array,count) is
the function which extracts count values in array from
{front, back} of the array. Cscale, Cgrad , Coptimize

add , and Coptimize
del

are constant values. We calculate a score for each pixel from
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Algorithm 2 Optimize tool image t

1: function CALCSCORE(t,g, p)
2: value← 0
3: cad j = CountAdjacentWhite(t, p)
4: if IsBlack(t, p) and IsNegGrad(g, p) and cad j > 0 then
5: value = GetGrad(g, p)
6: else if IsWhite(t, p) and IsPosGrad(g, p) then
7: value = GetGrad(g, p)+Cscalecad j
8: else
9: value =CgradGetGrad(g, p)

10: end if
11: return value
12: end function

13: function OPTIMIZETOOL(t,g)
14: t′← t
15: V ← []
16: for p in t′ do
17: push(CalcScore(t′,g, p),V )
18: end for
19: Psorted = argsort(V )

20: for p in ExtractFront(Psorted ,C
optimize
add ) do

21: ToWhite(t′, p)
22: end for
23: for p in ExtractBack(Psorted ,C

optimize
del ) do

24: ToBlack(t′, p)
25: end for
26: return t′

27: end function

the gradient and the number of adjacent white pixels. In
ascending order of this score, the top Cadd and the bottom
Cdel pixels are turned to white and black, respectively. tinit
is updated by tinit ← OptimizeTool(tinit ,gtool) in Alg. 2.

After Citer iterations of Eq. 6 and OptimizeTool(tinit ,gtool),
Citer×Coptimize

batch candidates of tool shapes and trajectories are
obtained. We use the tool shape and trajectory with minimum
L among all candidates as the optimized value of toptimized
and uoptimized .

We explained the method of optimizing both tool shape
and trajectory at the same time. In the case that either tool
shape or trajectory is optimized, the other is fixed and not
optimized. In the following experiments, we set Coptimize

batch =
10, Citer = 50, γ = 0.1 [rad], Cscale = 1E − 3, Cgrad = 0.1,
Coptimize

add = 10, and Coptimize
del = 10.

E. Detailed Implementation

The image binarization procedures of s and t are Crop,
Color Extraction, Closing, Opening, and Resize, in order.
Color Extraction separates the input image into tool, object,
and background images. To make this process easy, we use a
silver tool and the object is colored red. Note that the robot
arm is considered as a background. Crop is executed as in
Fig. 3, and Resize converts the image to the size of 64×64.

The convolutional layers for s and t have the same
structures. Each of them has 6 layers, and the number of
each channel is 1 (input), 4, 8, 16, 32, and 64. Its kernel size
is 3×3, stride is 2×2, padding is 1, and batch normalization
[22] is applied after each layer. s and t are compressed to
a 128 dimensional vector by fully connected layers, it is

RGB Sensor

Object

Tool

Servo Motor

Tool Attachment

Fig. 4: Experimental setup

Task Image Tool ImageBinarized Binarized

Fig. 5: Results of image processing

concatenated with u, and a 256+ 2n dimensional vector is
generated (n is the number of actuators of the robot). After
that, the vector is fed into fully connected layers whose
numbers of units are 256 + 2n, 128, 128, 128, and 256.
The deconvolutional layers have the same structure with
the convolutional layers, but only the last deconvolutional
layer does not include batch normalization. The activation
function of the last deconvolutional layer is Sigmoid, and
those functions of the other layers are ReLU.

III. EXPERIMENTS

We will explain our experiments using the actual robot: the
training of Tool-Net, the optimization of tool shapes using
Tool-Net, and evaluation of the optimized tools. Also, we
will show an advanced application of tool shape optimization
for multiple tasks.

A. Experimental Setup

We show the experimental setup of this study in Fig.
4. Aluminum frames are structured on a black background
sheet, and a camera and manipulator with 2 servo motors are
attached to the structure. The servo motors are Dynamixel
Motor (XM430-W350-R), and the camera is D435 (Intel
Realsense). As a tool, we used metal wire with a diameter
of 3 mm, which has enough strength for object manipulation
tasks and can be bent by hand. A mount to attach the tool to
is equipped at the tip of the manipulator. The object for the
manipulation task is a cylinder-shaped wooden block painted
red for color extraction.

We show the images binarized by the method of Section
II-E in the left figure of Fig. 5. The tool shape and task state
are extracted and binarized as shown in the right figure of
Fig. 5, and we use them for Tool-Net after resizing.

B. Tool Shape and Trajectory Optimization for One Task

1) Training Phase: We conducted data collection proce-
dures for 48 kinds of tools over 2 hours in total, and obtained
36000 number of data. We trained Tool-Net using these data
by Ctrain

epoch epoch, and used the model with minimum L. We
show the prediction results of task state in Fig. 6. When
given a certain tool shape and trajectory, Tool-Net was able

8390



Tool Shape / Trajectory Final State Predicted State

Initial State Initial State

Final State Predicted StateTool ShapeTrajectory

Fig. 6: The inference results using the trained Tool-Net

to predict the transition of task state correctly. We drew the
tool trajectory by solving forward kinematics of the robot.

2) Optimization Phase: We prepared Sample 1 – 5
with the data of (ssample

initial ,s
sample
f inal ,tsample,usample). As we set

scurrent = ssample
initial and starget = ssample

f inal , we compared three
optimizations: optimization of only tool shape, only tool
trajectory, and both. When optimizing only tool shape, the
tool trajectory is fixed to usample, and when optimizing only
tool trajectory, the tool shape is fixed to tsample. Note that
the sample data is just for reference and (tsample,usample)
is not used for optimization except for the fixed trajectory
or tool shape. We show the optimization results in Fig.
7. The left column shows sample data and the remaining
three columns show the three optimization results. Although
this optimization phase depends on the initial value, when
Coptimize

batch is large (e.g. > 1000), almost the same results are
obtained in every trial.

Even though the tool shape is initialized by randomly
chosen data from the training dataset and the tool trajectory
is initialized by random values as explained in Section II-D,
ssample

predicted and ssample
f inal indicate almost the same position and so

the optimization succeeds. ssample
predicted represents the predicted

state when using the optimized tool shape and trajectory. For
example, regarding Sample 1, a different tool shape from
the sample data is generated, and it is reasonable for the
task because it wraps the object well. Regarding Sample 2,
a tool shape like the sample data is generated. Regarding the
tool shape and trajectory optimization of Sample 3, a tool
shape without the parts of the sample data, which do not
contribute to the manipulation, is generated. We can see that
various kinds of tool shapes are generated, not just the same
shape with the sample data.

Regarding the tool shape optimization of Sample 1 and 4,
we show the transition of tool shape according to the iteration
of optimization in Fig. 8. In actuality, although we start
optimization from Coptimize

batch initial tool shapes and choose the
best one, we show only the transition of tool shape regarding
the best tool finally chosen. As we can see from the initial
tool shape, the optimization starts from the tool shape that
is close to the final shape, and it gradually changes.

3) Evaluation of Optimization Phase: Regarding the tool
shape and trajectory optimization, we evaluated the degrees
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of task realization in an actual robot experiment. We prepared
Task 1 – 3 with the data of (stest

current ,s
test
target). By the proce-

dures shown in Fig. 9, the task is executed with the optimized
tool, and task realization is evaluated. First, the tool shape
and trajectory are optimized at the same time for the given
task. Second, the optimized tool shape is made with metal
wire by human hands. When dcham f er between optimized and
current tool shapes becomes lower than 150 px, it is regarded
that the same tool shape is made. Although this procedure
includes some human arbitrariness, the threshold was enough
to resemble the generated tool in this experiment. Third, only
the tool trajectory is optimized for the man-made tool, and
the optimized motion is executed. After the task execution,
dcham f er between the final task state and the target task state is
measured. We repeated the procedures from task execution to
measurement of dcham f er 5 times, and calculated its average
and variance. Also, we prepared 4 random tool shapes: Tool
(a) – (d), for comparison as shown in the upper figure of Fig.
10. Regarding each random tool, only the tool trajectory is
optimized, the optimized motion is executed, and the average
and variance of dcham f er are calculated.

Regarding each task, we show the task, optimized tool
shape, man-made tool shape based on the optimized one,
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Fig. 10: Evaluation of tool shape optimization

and the average and variance of dcham f er, in Fig. 10. From
the average of dcham f er, we can say that the degrees of task
realization depend on the tool shapes, and they are high in
general when using the optimized tools. Regarding Task 1, in
which the object is placed far from the robot, the optimized
tool is straight-shaped and can achieve the task well, where
Tool (a) – (d) cannot reach the object. Regarding Task 2,
the tool shapes of Tool (b), (c) and the optimized one have
the same shape to wrap and pull the object to the right front
side, and the dcham f er are almost the same.

C. Tool Shape Optimization for Multiple Tasks

The optimization of tool shape in this study has a potential
to be applied for not only one task but also multiple tasks.
This can be executed by summing up L obtained for multiple
tasks and backpropagating it.

To evaluate the applicability for multiple tasks, we pre-
pared reversed tasks, Task (a): stest

1 → stest
2 and Task (b):

stest
2 → stest

1 . We executed experiments of the tool shape and
trajectory optimization for only Task (a), only Task (b), and
both, like in Section III-B.3, and then, calculated the average
and variance of dcham f er between the final task state and the
target task state. We show the results in Fig. 11. The tool
shape optimized for either Task (a) or (b) has a shape to wrap
the object firmly. On the other hand, the tool shape optimized
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Fig. 11: Experimental evaluation of tool shape optimization
for multiple tasks

for both Task (a) and (b) has a shape with a gentle curve, and
can be used for both Task (a) and (b). Regarding dcham f er,
when using the optimized tool shape for only Task (a), Task
(a) is realized well, but Task (b) cannot be realized. On the
other hand, when using the optimized tool shape for both
Task (a) and (b), both tasks can be realized to some extent.

IV. DISCUSSION

A. Experimental Results

The experimental results in Section III-B.1 indicate that
Tool-Net can infer the change of task state from the current
task state, tool shape, and tool trajectory. Section III-B.2
demonstrates that various tool shapes and tool trajectories are
generated as a result of the optimization process. These tool
shapes are usually reasonable, because they wrap the target
object well, have no useless parts that do not contribute to
the manipulation, etc. However, their pixels lose continuity.
In Section III-B.3, humans made the optimized tool shape by
hand while referencing dcham f er, and the optimized trajectory
was executed. As a result, the optimized tool shapes can
achieve the target tasks better than the randomly generated
tool shapes. While the randomly generated tools usually
cannot reach the target object or cannot wrap the object well,
the optimized tools can reach and wrap it well. In Section III-
C, Tool-Net is also applicable to multiple tasks. While a tool
optimized for a certain task can realize the task well, the tool
shape is hard to be used for other tasks. In contrast, while
a tool optimized for multiple tasks is a little inferior to the
tools optimized for each task, the tool shape has versatility
that can be used for the multiple tasks.

Our system has a problem on the making of actual tools,
because the generated tool shapes lose continuity of pixels
and cannot be directly made. Because humans make a tool
similar to the optimized one while referencing dcham f er in this
study, this process depends on human interpretation. To solve
the problem, we need to develop techniques of generating
realizable tool shapes while keeping the diversity of tool
shapes.

B. Future Directions

We believe that this framework can be applied to not only
object manipulation but also more general tasks, by changing
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the definition of task state. For example, by using 6 axis force
sensor or frequency and amplitude of sound as the task state,
a force applying or sound making task could be achieved.

Because the metal wire is used for experiments, the
generated tool shape is limited to the shape drawn by one
stroke. This spoils the benefits of using the binarized image
as tool expression. If we can use 3D printer or clay for tool-
making, the benefits of using an image can be emphasized
more, because tool shapes with branches and larger areas can
be handled.

Tool material or friction coefficient also sometimes affects
task execution. Although a binarized image cannot express
these characteristics, we may be able to optimize tool shape
considering them by embedding this information into an
image with multiple channels like color image.

If we would like to handle 3D movement, by using 3D
voxel representation with depth image for tool shape, we
believe this study could be extended to the 3D movement.

This framework could be also applicable to the flexi-
ble manipulator, if the representation of tool trajectory is
changed by adding time information to u or making the
network a recurrent one. Such networks will have a similar
structure with [20].

We came up with this study when seeing a human drop a
key into a gutter by mistake and pick it up using metal wire.
To achieve this task, not only the expansion to 3D movement,
but also a consideration of obstacles and efficient learning
will be required. In the current form, the necessary number
of trials explodes exponentially depending on the number
of robot actuators and degrees of freedom of tool shape
representation. It will be important for efficient training of
Tool-Net to address the curse of dimensionality by using not
only obtained data but also prior knowledge such as physical
laws and the analogy of own body and tool shape like in [6].

V. CONCLUSION

We proposed a method to obtain an optimized tool shape
and trajectory for given tasks using backpropagation tech-
nique of a neural network. A transition network of task
state by a certain tool shape and trajectory is trained, and
a tool shape and trajectory to realize the target task state are
calculated using it. Also, we proposed data augmentation
for efficient training, and a method to update pixels in tool
shape image for optimization. Finally, the given tasks can
be achieved more accurately by using the optimized tool
shape. In future works, by using not only obtained data
but also prior knowledge such as physical laws and robot
configuration, we will expand this method to a more practical
form.
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