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Abstract— This paper presents an industrial staircase local-
ization algorithm based on RGBD data from a tracked robot.
This situation is really challenging as the camera is placed close
to the ground. Moreover, RGBD can be really noisy on sparse
staircases. Contrary to existing works, our evaluation relies
on ground truth data provided by a motion capture system.
Our experiments suggest that our algorithm can robustly locate
industrial staircase. We also propose a new framework to
evaluate stair localization performance from RGBD data. The
overall performance allows to safety control a robot to rally
the staircase.

I. INTRODUCTION

Autonomous systems are required to be able to move in

complex environments. They are either dedicated to indoor

or outdoor applications. Moving in complex environments

requires perceiving, analyzing and acting according to the

surrounding environment and the task to be achieve. Field

robotics works are now able to tackle highly irregular envi-

ronments. Field robotics applied to multiple levels building

involve to move through stairs. Still, staircases remain really

challenging. In fact, they can be narrow, steep and result in

low grips both for wheeled and tracked robots.

3D detection and location of staircase are actually the

first step necessary to properly reach and start climbing

staircase. Robot location with respect to the staircase must

be accurately determined in order to align the robot with the

first stair. It allows the robot to travel in staircases as narrow

as the robot width.

Several modalities are available to detect and locate stairs

from low robots. They can be LiDAR-based or vision-based.

First, several LiDAR-based technologies have been inves-

tigated. Fair and Muller [2] used range measurement sensors

placed below a track robot to detect stairs. The robot must

be descending the staircase and be able to stand on the stair

to apply a detection based on a height gap. As a result, it

cannot be applied in the reaching phase of the staircase.

Mihankhah et al. [8] have used a single-layer LiDAR to

detect and climb stairs. The LiDAR scans vertically and

detects layers of the staircase. The detection was applied

on a regular staircase with plain stair riser and tread. Still, it

may not be applicable for industrial staircases with no riser

and drilled tread.

Secondly, vision based and its variants have been explored.

Mourikis et al. [9] used stair detection to servo a robot

while climbing the staircase. Edge detection is applied in the

camera image to find the stair direction with respect to the
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Fig. 1: Tracked robot equipped with a RGBD camera

robot and control the robot accordingly. A similar approach

has been implemented by Carbonara and Guaragnella [1] to

detect stairs from a camera placed on an impaired person.

The camera image encompasses a large part of the staircase

as the camera is placed at a person height. The edge detection

result is combined with a FFT to estimate the stair case

location. Consequently, the staircase can be properly located

by merging the detection of several stairs. Shahrabadi et

al. [12] also employed an edge detection framework and

a Hough transform to find the main stair direction. Hesch et

al. [6] tackled descending stairs detection by mixing edge

detection and optical flow. The work has been applied on

a broad and plane staircase. Results have been achieved for

a tracked robot descending from a floor into the staircase.

While preceding works relied on 2D information, vision-

based 3D information can be computed from several vision

sensors. It allows detecting the staircase states, namely

location and direction, in 3D. Gutmann et al. [4] placed

a stereo camera in the head of a humanoid robot. The robot

was assumed to be roughly aligned in front of the stair case.

Planes resulting from the riser and tread were then detected.

Schwarze and Zhong [11] combined the edge detection from

the 2D images and the disparity map to detect the tread plane.

Both methods use high views of the staircase in addition

to features like plain riser and tread. RGBD camera can

directly output 3D information at high rates as the processing

is offloaded on the device itself. Wang et al. [14] employed

a RGBD camera worn on a person belt to detect stairs and

crosswalks. The RGB data is use to detect parallel lines in

the scene. Then, the ambiguity between crosswalks and stairs

is leveraged with the depth data. Perez-Yus et al. [10] placed

a RGBD camera on a person chest to detect stairs. Normal

estimation is performed on the down-sampled depth data.

Then region growing is applied to find the planes resulting

from plain treads and risers. Stairs are then extracted given

geometric constraints.
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Fig. 2: 3D View of RGBD data for an industrial staircase

observed from the tracked robot

Fig. 3: Reference frames used in this paper.

In this paper, we propose a stair detection and location

algorithm for tracked robots. The algorithm is designed to

work for both regular and industrial staircases. Moreover,

we investigated the scenario where a single sensor must be

able to handle for climbing and descending detection as well

as overall scene perception. As a result, the sensor must

be placed low on the robot to be able detect descending

stairs especially when the tracked robot is not equipped

with rear flipper. Negative pitch cannot be reached. The

low sensor location produces a field of view focused on the

first two stairs on the staircase. The stair tread cannot be

seen. The proposed method is able to deal with this complex

situation. To the best of our knowledge, all existing works

on stair location assessments are qualitative. Our evaluation

has been carried out with a VICON system in order to

provide quantitative results. Our results provide insights on

the performance of our approach on real staircases.

The paper is organized as follows. Section II presents a

flexible and realtime framework that allows locating stairs

from a tracked robot. Section III qualifies the performance

of our method on regular and industrial staircase. Section IV

concludes the paper.

II. METHODOLOGY

First, let us define the different frames used in the paper

(c.f. Figure 3). Our paper provides the ground truth as given

by a VICON system. Its reference frame is named Rv and

will be associated to the world frame. The staircase state in

Rv is represented by Re. It is a six-state vector including

position and orientation. The camera pose Rc attached to the

robot Rr are also expressed in Rv .

While RGBD cameras do not suffer from the density prob-

lem encountered with LiDARs due to low vertical sampling

density, it can suffer from a 3D measurement noise and lack

of depth information when the vision-based triangulation

fails (c.f. Figure 2). This is particularly true for industrial

staircase with rather narrow stair riser. Our proposed staircase

location method aims at tackling this particular issue

A. Staircase localization

The algorithm is based on the depth information of the

RGBD camera. As shown in Figure 3, the x-axis, y-axis and

z-axis of the camera point respectively front, left, up. Stairs

can be assimilated as a jump in depth especially from our

low point of view. In fact, only stair nosing can be seen. Our

algorithm will be looking for this information.

Perez-Yus et al. [10] applied spacial filters on planes

namely vertical spacing between horizontal planes and hori-

zontal spacing between vertical planes. As shown in Figure 2,

the quality of the depth data can be poor. Moreover, only the

stair nosing is available for industrial staircases.

We aim at robustly locating the first stair nosing as given

by Re in Figure 3 and the vector associated to ~Xe.

First, we sort points in ascending order along each

columns according to their x values. It aims at removing

empty pixels, i.e. pixels with no depth information due to

triangulation errors. Succeeding points are compared each

other. As soon as a gap between τmin and τmax is en-

countered, the point value X = {x, y, z} is stored in the

3D point candidate list L for the 3D line corresponding to

the stair nosing N . The parsing process along the column is

then stopped. Each column being processed independently,

this step can easily run in parallel.

The list L is then used to robustly estimate the 3D line N

associated with the stair nosing. Any points pr belonging to

the estimated stair segment is defined as follows :

pr = rr + k.~er (1)

where :
rr location of the estimated segment origin

er estimated segment direction

k scalar value between 0 and 1 included

~er, the direction vector of the line, is actually equal to Xe

or −Xe.

We used RANSAC [3] to find the best line from L. Two

points P1 and P2 were randomly picked. One point was set

to be P0. ~e is equal to P2 − P1. The remaining points Pi

in L are used to find inlier candidates using the following

distance formula:

di =
|Pi − P2| · |Pi − P1|

|P2 − P1|
(2)
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Algorithm 1 First Stair Detector

1: procedure FIRSTSTAIRSDETECTOR(I,XYZ)
2: I ← image RGB
3: XYZ(p) ← position (X,Y,Z) associated with pixel p of image I
4: N,M ← size(I)
5: for each column c in I do

6: p0 = I(N, c)
7: n = N

8: i = n− 1
9: p1 = I(i, c)

10: while i > 0 do

11: n = i− 1
12: for j = i− 1, j > 0, j = j − 1 do

13: if X(I(j, c)) < X(p1) then

14: p1 = I(j, c)
15: n = j

16: end if

17: end for

18: if xmin < X(I(p1)−X(p0) < xmax then

19: P ← XY Z(p0) ⊲ add the point to the first step
candidates

20: i = −1
21: else

22: i = n

23: end if

24: end while

25: end for

26: RANSAC(P)
27: end procedure

A point is regarded as an inlier if di is less than τinlier.

The line with the maximum number of inliers is chosen as

the 3D line corresponding to the stair nosing. The location

of the staircase actually corresponds to the middle of the two

extreme inlier points, namely left-most and right-most. ~Xe is

either equal to ~e or −~e depending if ~e is positively oriented

along the y-axis of the camera. The full algorithm is shown

in Algorithm 1

B. Staircase location performance estimation

While existing papers on staircase detection provide a

qualitative analysis of the performance, we have chosen to

propose a quantitative analysis. We have used a VICON

system to locate the staircase accurately. The VICON system

gives a millimeter grade accuracy. Still, the staircase location

is expressed in the VICON reference frame Rv . The staircase

measurement is done in the camera reference frameRc. It is

therefore necessary to be able to express the points of the

camera frame in the VICON frame as follows:

Pv = Hv→c · Pc (3)

where:
Pv point in the VICON frame

Pc point in the camera frame
Hv→c is actually unknown. From Figure 3, it can be seen

that the transform can be estimated using the robot transform

in the VICON frame Hv→r. As a matter of fact, the robot can

be equipped with VICON marker whereas it is impossible

to directly observe to camera location in the VICON frame.

Equation 3 can be updated as:

Pv = Hv→r ·Hr→c · Pc (4)

Fig. 4: Camera frame Rc(Xc, Yc, Zc) and pinhole frame

Rp(Xp, Yp, Zp)

Fig. 5: Checkerboard used in the 2D-2D method

VICON markers are circled in red

where :
Hr→c Transformation from the camera frame to the

robot frame

Hv→r Transformation from the robot frame to the VI-

CON frame

Hv→r is directly given by the VICON system. We have

investigated several methods to obtain Hr→c based on RGBD

and VICON data.

1) 2D − 2D method: RGBD sensors provides RGB and

depth information. Checkerboard are widely used to calibrate

cameras. As a result, our first proposal uses a checkerboard

embedding VICON markers (c.f. Figure 5) and RGB data.

The VICON marker locations are consequently known in

the checkerboard frame Rm. The robot to camera transform

estimation can be updated as follows:

Hr→c = Hr→v ·Hv→m ·Hm→c (5)

Hv→m Transformation from the checkerboard frame to

the VICON frame

Hm→c Transformation from the camera frame to the

checkerboard frame

Hm→c is estimated by PnP [5], which provides the

checkerboard pose in the camera frame.

Markers on the checkerboard are given as a list of 3D

points Xm. The corresponding points are also given in the

VICON frame as the list Xv . They are both rigidly related

as follows:

Xv = Hv→m ·Xm (6)

Umeyama [13] algorithm has been used to estimate

Hv→m. The resulting Hr→c obtained by applying Equation 5

must be slightly updated as our camera reference frame does

not fit the pinhole model with the following transform:

H2D
r→c = Hr→c ·R (7)

with :

R = Rx(90) ·Ry(0) ·Rz(90) (8)
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2) 3D−3D method: The second approach is based on the

3D information provided by the RGBD sensor. The previous

approach requires the PnP step to obtain the 3D location

of the VICON markers in the camera space. This second

solution relies only on 3D information. As a matter of fact,

the depth information provided and consequently is the 3D

location the marker. Still, this information can be noisy

as illustrated earlier in the paper. Given a set of markers

placed in the FOV (Field of View) of the RGBD camera

Xc and their corresponding points given by the VICON,

we can estimate Hv→c with the Umeyama algorithm. Then,

the transform from the robot to the camera H3D
r→c can be

estimated as follows:

H3D
r→c = Hr→v ·Hv→c (9)

Our approach relies on clicking the markers in the RGBD

image to obtain their 3D locations with respect to the camera.

H2D
r→c and H3D

r→c are theoretically equal.

3) Robust Hr→c estimation: The robot-camera assembly

ensures that Hr→c remains constant over time. Nevertheless,

the camera data can be noisy and so is the PnP results or

3D points computation. As a consequence, several datasets

must be used to robustify the transform estimation for both

methods. The transform must be correctly averaged. We

separated the rotation and translation components of the

transform.

The final translation T is the average of the translations

from each sample Ti :

T̄ =
1

n
.

n
∑

i=1

Ti (10)

Rotational components Ri have been converted into

quaternions qi in order to properly estimate the average

quaternion q as:

q̄ = argmin
q∈S3

n
∑

i=1

wi‖A(q)−A(qi)‖
2
F (11)

We solved this equation based on the eigenvalue method

given by Markley and al. [7]. q̄ is then converted back to a

rotation matrix. Both resulting H2D
r→c and H3D

r→c are based

on averaged transforms.

4) Staircase location evaluation: Ground truth for the

staircase location is known by placing two VICON markers

on the corners of the first stair nosing. Several similarity

measures can be investigated.

First, the mean of these two points can be defined as the

staircase location.

The location error dl can be measured as:

dl = ‖Xr −Xg‖ (12)

where :
Xr Staircase location estimation found by our

RANSAC-based algorithm

Xg Staircase location ground truth

(a) Camera setup with VICON
markers

(b) Example of
experimentation

Fig. 6: Setup used in our experiments

Secondly, the staircase location error can be seen as the

distance between the two segments ds. This distance can be

computed as follows :

ds =

{

~n.(rr−rg)
||~n|| , if n 6= 0

|| ~erg× ~eg||
|| ~eg||

, otherwise
(13)

with ~n = ~er × ~eg and ~erg = pr − pg .

Thirdly, the staircase direction can be associated with

the unit vector corresponding to the difference between

the two markers. Any points pg belonging to 3D segment

corresponding to the ground truth stair nosing is defined as:

pg = rg + k ~eg (14)

where:
rg location of the ground truth marker used as the

segment origin

eg segment direction

k scalar value between 0 and 1 included
The equation for the estimated segment has already been

defined in Equation II-A.

The angle α between the two segments is then given as:

α = cos−1(
~eg · ~er

‖~eg‖ · ‖~er‖
) (15)

III. RESULTS

A. Experimental Setup

For the ease and completness of the experiments, we used

the setup shown in Figure 6a. The RGBD camera is placed

at the same height as the robot shown in Figure 1. This

setup especially ensures that the VICON markers are fully

visible by our VICON setup. Our VICON setup is made of

20 cameras placed in a 10x15m room. An Intel RealSense

D415 was used in our experiments. The calibration pattern

is an A0 7x5 square checkerboard.

Several dataset were collected. We split datasets used to

estimate Hr→c and the dataset used to benchmark 2D and

3D approaches.

First, we will present the validation results for the esti-

mation of the matrix H. In a second step, we will see the

results obtained for the staircase detection with the matrix H

estimate.

B. Hr→c estimation

We have used 10 samples for Hr→c estimation and 10

samples for Hr→c quality estimation. The samples corre-

sponds to checkerboard with VICON markers placed on
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Fig. 7: Industrial stair data from the RGBD camera

The thin green line corresponds to the located stair in the RGB image

Method Mean Standard Deviation

2D-2D 0.0381 0.0015

3D-3D 0.0140 0.0017

TABLE I: Hr→c estimation benchmark

Out of 10 samples

Dataset Distance IRON Angle IRON

Distance (m) d ∈ {0.6, 0.7, · · · , 1.9} 1.0
Angle (◦) 0.0 a ∈ {−20,−10, · · · , 20}

TABLE II: Stair localization dataset

it. RGBD camera and the VICON system simultaneously

record the checkerboard. Marker locations are known in the

checkerboard space and the VICON space. PnP gives the

checkerboard pose with respect to the camera. As a result,

marker location Pc are given in the camera reference frame.

The 3D-3D method based on marker selection in the camera

image directly given marker locations in the camera reference

frame. As a consequence, we can estimate marker locations

in the VICON reference frame V P̂c as follows:

V P̂c = Hv→r ·Hr→c · Pc (16)

where:
Hv→r Transformation from the robot frame to the VI-

CON frame provided the VICON system

Hi
r→c Transformation from the camera frame to the

robot frame provided by either the 2D or 3D

method with i = 2D or i = 3D respectively.

The error is then computed as the mean and standard

deviation of the 3D error between the estimated and true

VICON marker location on the test set. Table I reports the

results. It can be seen that the 3D-3D method gives the best

result with an average error of 1.4cm and a low standard

deviation of less than 2mm. The standard deviation is

similar for the PnP-based estimation is about 3 times larger.

This can be due to a biased estimation of the checkerboard

pose computed by the PnP. The 3D-3D method relies on

noisy depth data from the RGBD camera and VICON data.

This approach seems more accurate than the 2D-2D method.

Consequently, H3D
r→c will be used for the rest of this paper.

C. Stair localization evaluation

Stair localization evaluation was performed with two

dataset. First, the setup is centered with respect to the stair-

case center as defined earlier. Then the distance is increased

by steps of 10cm. Sensitivity to the distance is consequently

investigated. Secondly, the setup is placed 1m away from the

staircase. The setup is then moved about a circle to change

the angle of the camera with respect to the staircase direction.

The dataset is freely available1 for benchmark purposes.

Figure 8a presents the results to the distance sensitivity

study. It measures the 3D distance to the ground truth

staircase center dl. We can see that the mean error over the

entire range is less than 5cm. The error is less than 5cm from

0.6m to 1.7m. Then, it increases significantly. This error is

explainable by an increase in the depth uncertainty provided

by the RGBD camera.

Figure 8b presents the results to the angular sensitivity

study. The mean error is about 5cm. We can that the error

is symmetric about zero. It tends to increase as the angle

increases. This phenomenon is caused by the perspective

projection. As the viewpoint angle of the camera increases,

the right-most or left-most edge of the stair nosing tends to

be under detected as the gap threshold conditions are not met

anymore. It induces a shift in the stair center location.

We also investigated the influence of camera angle on the

ds (Equation 13). The result is shown in Figure 9a. We can

see that the distance between the stair nosing segment and the

estimated stair nosing location is rather small. It is actually

smaller than the RGBD sensor noise. Variations with respects

to angle are not significant.

Finally, we compared the estimated noising direction with

the ground truth based on the α measure (Equation 15). The

angles are small over the entire angular span. It means that

the direction is correctly estimated.

To sum up, we can see that the error found on the staircase

center is a shift along the stair nosing direction. As a result,

the impact for robot control is rather limited. The robot

may be slightly shifted about the staircase center. The robot

heading will be correct and so is the control to reach the

staircase.

1https://github.com/vauchey/StaircaseLocalization
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Fig. 8: Errors on the staircase center
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Fig. 9: Staircase localization sensitivity to angle

IV. CONCLUSION

In this paper, we have presented an algorithm able to

localize a staircase with respect to a RGBD camera and a

robot. Contrary to the state-of-the art papers, a quantitative

evaluation is carried out with a motion capture setup. Our

results suggests our algorithm can accurately localize an

industrial staircase from tracked robots. The staircase first

nosing is detected within 2cm. The nosing direction error is

less than 1◦. Future works will focus on several topics. First,

we will evaluate our algorithm on plain staircases. We will

test other point of viewer. Such point of views might allow

merging the decision from several steps in order to make the

localization more robust.
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