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Abstract— We present our second generation tactile sensor
for the Shadow Dexterous Hand’s palm. We were able to signifi-
cantly improve the tactile sensor characteristics by utilizing our
latest barometer-based tactile sensing technology with linear
(R2 ≥ 0.9996) sensor output and no noticeable hysteresis. The
sensitivity threshold of the tactile cells and the spatial density
were both dramatically increased. We demonstrate the benefits
of the new sensor by re-running an experiment to estimate
the stiffness of different objects that we originally used to
test our first generation palm sensor. The results underline a
considerable performance boost in estimation accuracy, just due
to the improved tactile skin. We also propose a revised neural
network architecture that even further improves the average
classification accuracy to 96% in a 5-fold cross-validation.

I. INTRODUCTION

Equipping robotic hands with advanced tactile sensing
capabilities, along with a fundamental understanding of
motor-control processes, will eventually lead to universal
dexterous robots capable of executing manual everyday ac-
tivity tasks [1] that require a high degree of manual intelli-
gence [2], comparable to the level seen in humans. We have
previously developed tactile sensors for the fingertips [3],
[4] and palms [5] of robotic hands – areas containing the
highest density of mechanoreceptors in human hands [6].
The present work was motivated by our robotics grasping
and manipulation experiments, revealing the necessity to
improve the spatial resolution and the sensor sensitivity of
our previous palm sensor [5].

Covering palms of robotic hands with sensors has been
pursued before [7]–[13], but to the best of our knowledge,
no other research group has tried to tackle adding tactile
sensing to such a complex and curved robotic palm shape as
the one of the Shadow Dexterous Robot Hand (SDRH) [14].
Although the present work explicitly targets SDRH, the
underlying technology is applicable to a wide variety of
robotic hands.

In the present work we were able to significantly improve
on our previous palm sensor for the SDRH [5], by consider-
ably increasing the sensitivity and the spatial density of the
tactile cells. Our newly developed barometer-based tactile
sensors have a linear characteristic and show no noticeable
hysteresis. Sec. II discusses the details of the construction.
Sec. III presents the results of the evaluation of the novel
barometer-based sensing technology. In Sec. IV, we present
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Fig. 1. Our 2nd gen. palm tactile sensor for the Shadow Dexterous Hand.
54 tactile cells cover the palmar surface (of which 50 are on the main unit
and 4 on the little finger unit) and additional 6 cells cover the ulnar side
of the little finger metacarpal. The upper right inset shows the dorsal side
of the sensor with a flexible attachment of the little finger unit, a power
distributing circuitry, external communication ports, and a microcontroller.

an improved neural network architecture that extends our
earlier work [5], along with a re-run of the old architecture
on the novel sensor to systematically assess the benefits of
the novel sensor design, and, separately, its potential when
connected with a richer neural network architecture. We
conclude with a discussion and present ideas of future work
in Sec. V.

II. DETAILS OF CONSTRUCTION
We set out to create an upgraded palm sensor for the

SDRH, with the main goal to improve on tactile sensing
by increasing contact sensitivity and spatial density. Fig. 1
presents the final sensor, mounted onto a left SDRH.

A. Tactile sensing

Tactile sensors based on various transduction principles
have been developed in the past [15]–[17], whereas in the
present work we identified MEMS-based barometer sensors
as one promising solution towards robust high-resolution tac-
tile sensing and invested effort into its further development.

The barometer-based tactile sensing was pioneered in
Robert Howe’s lab at Harvard University by Jentoft and
Tenzer [18], [19] and commercialized as TakkTile [20]. As
sensing elements, they used MPL115A digital barometer
chips by NXP Semiconductors, cast in rubber. The rubber
layer transmitted the external contact forces onto the MEMS
membrane inside the barometer chip. The MPL115A has,
in today’s view, a relatively thick package with a height of
1.2 mm and a printed circuit board (PCB) footprint of 15
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(a) Stock BMP388 reflow
soldered onto a PCB.

(b) Carefully prying the case
open with a scalpel.

(c) BMP388 sensor die and
bonding wires as seen under
removed metal cap.

(d) Drilling the 1.8 × 1.8
mm cap using a �0.9 mm
drill bit.

(e) Re-assembled BMP388.

Fig. 2. The modification steps to enlarge the orifice of a BMP388 digital barometer chip from factory �0.25 mm to �0.9 mm. (a) The chip is soldered
onto a PCB for easier handling. (b) The cap is carefully removed using a scalpel, revealing the sensor die and its bonding wires (c). (d) With tweezers,
the cap is positioned and held steady during drilling. (e) The modified cap is re-glued, but rotated 180◦ relative to the original orientation. This hides and
protects the bonding wires under the cap from physical damage.

mm2, without counting the required peripheral components.
As we planned our sensor as an add-on attachment to the
SDRH, it was important for us to create the palm sensor as
thin as possible in order not to limit the movement of the
joints and grasping range of the SDRH. Our search for a
smaller and higher resolution alternative to MPL115A with
only 10-bit output quickly revealed one significant property,
all newer and smaller barometer chips were missing, namely
an orifice big enough to allow the silicone rubber to easily
reach the MEMS membrane when cast in a vacuum cham-
ber. Newer and smaller MEMS barometer chips, such as
ST Microelectronics LPS22HD and LPS35HW, Amphenol
Advanced Sensors NPA201, TE Connectivity MS5637 or
Bosch Sensortec BMP388/390, come with orifice sizes of
only �20 µm to �0.4 mm. An orifice in this size prevents
the silicone rubber from reaching the MEMS layer using
previous manufacturing techniques, resulting in strong signal
drift and hysteresis due to an air gap remaining between the
MEMS layer and the silicone, as shown in Sec. III or in [21].

After identifying the reason for the mediocre performance
of tactile sensors based on such tiny MEMS barometer chips,
we looked for a way to enlarge the �0.25 mm orifice of
the Bosch-Sensortec BMP388, the smallest digital barometer
chip known to us currently available on the market, with a
package size of only 2.0×2.0×0.75 mm. Simply enlarging
the hole in the metal cap by drilling, usually damaged the
chips. Also, removing the cap completely and directly casting
the chips in silicone rubber was not successful, as without the
protective cap, the delicate bonding wires easily got damaged
under stronger interaction forces. But we were successful by
dismantling the cap, drilling and deburring a bigger hole and
mounting the cap back onto its base with the MEMS die.

We begin the modification by soldering the BMP388
sensor chips onto a PCB for fixation (Fig. 2a). The next step
is the most delicate one: using a scalpel, we carefully pry the
case open (Fig. 2b), while avoiding contact with the sensor
die and the bonding wires (Fig. 2c). The scalpel is pressed
solely into the corners opposite of the bonding wires. Fig. 2c
displays the sensor where the cap has been successfully
removed, revealing the die and the bonding wires. The proper

operation of the chip is checked with a microcontroller-based
readout circuit at this stage. In the next step, the removed cap
is modified using a �0.9 mm drill bit, while it is positioned
and held in place with tweezers (Fig. 2d). After drilling,
the cap is carefully deburred and cleaned, before it is glued
back onto the sensor using Loctite 3612 epoxy surface mount
adhesive. The cap is rotated by 180◦ relative to the original
factory configuration in order to position the orifice as close
as possible over the MEMS membrane and at the same time
as far away as possible from the bonding wires in order to
shield them best from mechanical stresses occurring later
during usage as a tactile sensor cell. The glue is hardened
roughly for 3 minutes inside an oven heated to ≈150◦C.
Fig. 2e displays the re-assembled BMP388.

B. Sensor shape and construction

To fit the shape of the SDRH, we modeled a flex-PCB
around the 3D shape of the palm employing the sheet metal
environment of the Solid Edge CAD software and used its
flatten function to retrieve the required 2D contour (Fig. 3).
Using this contour, we designed a double-layered flex-PCB,
applying all common design rules [22].

Due to the elevated effort to manually enhance a single
barometer sensor (taking roughly 15 min per sensor), we
limited the overall amount of sensors to 60, which we
distributed uniformly on a 6×8 mm grid across the palmar
side of the hand. In principle, due to the small package size of
the sensor, a spatial resolution of up to 2.2 mm is possible as

Fig. 3. From 3D shape to flat shape contour to be used as a guide
for developing the flexible PCB, the base of the palm sensor. (left) The
3D model of the sensor shape is constructed in CAD to cover the palm.
(middle) The sensor shape in 3D without SDRH. (right) Flattened shape of
the sensor. (For simplicity, middle and right images do not show the little
finger metacarpal unit)
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Fig. 4. Casting the silicone rubber. (left) Plastic frames help to contain the silicone only in desired areas. (middle) De-gassing the silicone rubber in a
vacuum chamber after casting. (right) The palm sensor with a 3 mm thick rubber layer after degassing and silicone drying, ready to be mounted onto
robotic hand.

we have demonstrated in a small 5×5 array [23]. For casting
the sensor, we followed mostly the process described in [19],
with some alterations that we describe next.

After cleaning the flex-PCB from the solder residue, we
treated the flex-PCB areas surrounding the chips with a
primer MM4 from SilikonFabrik.de to improve adhesion of
the silicone. Next, we placed a 3 mm high 3D-printed cast
frame around the sensors (shown in white in Fig. 4 left
image) and poured the silicone into the mold. To this end, a
2-component, room-temperature curable silicone, type SF13,
was used (also from SilikonFabrik.de), resulting in a shore
hardness of 13 ShA. Next, we evacuated the entrained air
bubbles in a vacuum chamber at 200 mbar for 15 minutes
(Fig. 4 middle). As still some bubbles remained after this
process, we increased the vacuum to 50 mbar and continued
the process for additional 5 minutes. After bringing the
sensor back to atmospheric pressure, it took roughly an
hour for the remaining bubbles to disappear. The sensor
was given an additional whole day to fully cure at room
temperature and atmospheric pressure, before the cast frame
was eventually removed (Fig. 4 right).

The BMP388 sensor chips are sampled via SPI bus at 100
Hz by a PIC32MZ microcontroller and the sampled data is
currently relayed via USB-CDC to the controlling PC. The
palm sensor is already prepared for optical pre-touch sensing,
thermal imaging, motion and acceleration sensing and direct
data transmission via SPI to the SDRH’s data bus. The final
integration of these components is future work. Within the
present paper we only focus on tactile sensing.

III. EVALUATION
In order to evaluate the performance of the enhanced

tactile sensor and compare it with an unmodified BMP388
chip, we designed a small test PCB with 4 tactile cells, using
two stock and two enhanced barometer chips (Fig. 5).

First, we evaluated the sensor’s temperature stability over
time. To this end, we exposed the sensor test unit and a
temperature reference sensor (Bosch Sensortec BMP280) to
the sun on a cloudy day and recorded the sensor output,
including the temperature, over the course of roughly 2
hours. Fig. 6 plots the corresponding data. The red curve
displays the temperature fluctuation within a range of roughly
3◦C over the course of the experiment. Note, that the raw
sensor values decrease with increasing pressure. To facilitate
comprehension, we have inverted the raw sensor axis in
this and all upcoming figures. Interestingly, both unmodified

Fig. 5. BMP388-based tactile sensor test unit with four cells. Interleaved,
two stock and two enhanced BMP388 digital barometer chips (with enlarged
orifices) are populated. The right image shows the chips before casting in
silicone rubber for improved visibility.
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Fig. 6. Temperature dependency of two unmodified stock and two
enhanced tactile sensor cells while exposed to the sun for 2 hours. The cells
with unmodified chips (blue and purple curves) show high, but undesired,
correlation to the temperature (red), whereas the enhanced cells (brown and
green curves) show almost no dependency on temperature. Their curves
overlap, resulting in a single green-brown line only.

BMP388 chips (blue and purple curves indicating their
raw pressure sensor output) show a strong, but undesired
correlation to temperature, whereas the enhanced sensor cells
(shown in green and brown) are stable and independent from
temperature. Please note that the graphs of the enhanced
cells mostly overlap, while the stock sensors exhibit slightly
different behavior – due to different volumes of air enclosed
between their MEMS layer and the silicone.

In the second evaluation, we looked at the sensor perfor-
mance, while repeatedly applying a triangular force pattern
from 0 to 3 N and back. 3 N was previously experimentally
found to be meaningful limit, slightly above the saturation
point of our enhanced sensor cells. For applying the force, we
used a custom-built measurement rig with a calibrated, in-
dustrial force sensor (ME-Meßsysteme GmbH KD45 ±10N,
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Fig. 7. Custom built measurement rig with a calibrated industrial strain
gauge reference sensor mounted on a numerically controlled linear axis.
The close-up shows the reference sensor with the probe tip and our test
unit with four BMP388 sensors next to the readout electronics.

accuracy class 0.1%) for ground-truth reference (Fig. 7).
The reference sensor was moved on a vertical linear axis
by a stepper motor. The signal was sampled using a data
acquisition card with 16-bit ADC. The linear movement was
transformed into a force via a spring between the axis and
the reference sensor. For our tests, we used a cylindrical �5
mm probe tip. Fig. 7 right shows a close-up of the reference
sensor, the probe tip, our test sensor with four BMP388 chips
and the readout electronics.

After each movement step of the rig a pause of 1 s was
kept for the mechanics to stabilize before a new measurement
was taken. The triangular force profile was applied 5 times,
before the probe was advanced to the next tactile cell. Each
cycle lasted ≈4.5 minutes resulting in a total duration of
1.5 hours. The resulting output of all 20 trials is depicted in
Fig. 8. Fig. 9 plots the same data as the sensor characteristic
of all 4 sensor cells. The enhanced sensors (shown in green
and brown) display low variance in performance, whereas the
unmodified sensor cells (shown in blue and purple) exhibit
significant variance between the cells. Our enhanced cells
show superior, almost linear (R2 ≥ 0.9996) characteristic
without noticeable hysteresis, whereas the unmodified cells
show high variance between single trials and between the
cells as well. As can be taken from Fig. 9, the modified
sensors cover a force range of 2.8 N, which – given the
small probe tip – corresponds to a pressure of ≈ 140 kPa.
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Fig. 9. Sensor signals of Fig. 8 plotted as raw sensor output vs.
reference force. The enhanced sensors (in green and brown) show a slight
manufacturing difference, but overall very similar performance with almost
no hysteresis or noise, and perfect linearity (R2=0.9996 and 0.9998 resp.).
In contrast, the behavior of the unmodified sensor cells strongly differs:
sensor 2 (blue) exhibits strong variance between trials, while sensor 1
(purple) is rather insensitive within the 3 N force range.

A small saturation can be noticed for both modified sensors
close to the maximum force of 3 N, while the unmodified
sensors either saturate much earlier (#2) or later (#1).

Our third experiment investigated the sensitivity threshold
of the sensors. To this end, we applied precision weights
in 10 mg steps onto the modified sensor cells and observed
the raw sensor value. As soon as this changed, we noted
the value. We tested both of our enhanced cells 10 times
and found 20 mg to be the reliable detection threshold. With
a weight �5 mm, this evaluates to a sensitivity threshold
pressure of just ≈ 10 Pa. In comparison, even a 10 g weight
on top of the unmodified cells was not enough for a reliable
detection threshold due to strong drift of the sensor output.

These results show that our tactile sensor cells, based on
enlarged-orifice BMP388 barometer chips, not only outper-
form our previous palm sensor [5], but exhibit a signifi-
cant performance boost also when compared to the original
MPL115A-based tactile sensors [13], [18], [19].

Fig. 10 illustrates the tactile skin activation when holding
various objects – employing our ROS tactile toolbox [24] for
visualization. The 4 image pairs each show the held object
and the visualization of tactile responses in RViz, in which
object-specific contact patterns can be easily observed.
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Fig. 8. Evolution of the sensor signals while applying triangular force profiles to the 4 sensor cells of the test unit shown in Fig. 5. The top diagram
shows the reference force and the bottom diagram displays the raw sensor outputs. Ideally, a sensor’s signal should exactly follow the reference force in
exactly one segment (when it is probed). While the enhanced cells exactly follow the signal (and even slightly react to the probing of neighboring cells),
the unmodified sensors are rather unresponsive (sensor 1) or noisy (sensor 2). Also, the unmodified sensors exhibit very different sensitivity.
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(a) Allen key (170 g) (b) Bottled water (314 g) (c) Ball bearing (102 g) (d) Marble (4 g)

High pressure
0.5% of range

Low pressure

(e) Colormap

Fig. 10. Visualized tactile sensor output when touching objects with features. The output is color-coded from dark green for low pressure, over green
and yellow to red denoting pressure at 0.5 % of the range (ca. 700 Pa). The contact area and force profile can be clearly observed in the sensor output
visualization.

SDRH squeezing a cardboard tube fabric bag

bubble soft foam hard foam

marbles
coarse

granules
fine

granules

Fig. 11. Leftmost image shows an experiment trial in progress. To the
right are the other test objects: bags fitted with different materials.

IV. APPLICATION: STIFFNESS ESTIMATION

An important task in everyday activities which requires a
sensitive sense of touch is the handling of soft objects like
food. We evaluate the barometric sensor in a stiffness clas-
sification task and compare its performance to our previous,
fabrics-based palm sensor with the same settings as in [5]
and an additional, improved neural network architecture.

The experiment consisted of squeezing 7 cylindrical ob-
jects against the palm with all 4 fingers. The considered
objects are shown in Fig. 11. Recorded sensors include palm
and fingertip [3] tactile sensors as well as joint angles.

To avoid learning the material solely from the size of the
bag (i.e. employing the hand posture), their initial diameter
is very similar across all objects (4 – 5.5 cm). An experiment
trial is decomposed into 4 phases: A) squeezing the object,
B) maintaining the grasp posture for 10 s, C) relaxing the
tendons for 5 s, and D) actively opening the hand. To obtain
a dataset for training, we performed ten trials for each of the
7 objects. Note that a force-limiting algorithm [25] runs to
protect the hand’s tendons in phases A and B, which resulted
in a slight decay of the grasping force over time. For more
details about the original experiment, please refer to [5].

Fig. 12 compares some typical signals of the old and new
palm tactile sensors when squeezing a bag of coarse granules.
All signals were normalized to their respective ADC ranges
and biased to start at zero. The new sensor exhibits an
almost 20 times larger signal amplitude compared to the
older, fabric-based one, which operates close to the ADC
resolution. Moreover, the new sensor provides higher ADC
resolution and is less noisy during the motionless phases.

We classified the obtained sensor sequences with a re-
current neural network, composed of several LSTM nodes
[26]. An LSTM node can efficiently memorize context over
time and thus learn long-time dependencies within the input
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Fig. 12. Example tactile signals of 2 active cells for the fabric-based (red,
magenta) and the barometer-based (black and blue) sensor, during the 4
phases (A to D) when squeezing a bag of coarse granules. Signals were
normalized, biased, and resized (x10 for fabric sensors). Even despite this
resizing, the barometer sensors exhibit a much stronger signal.

signal. In our case, the network needs to extract the object
stiffness from the time-evolution of the force profile with
respect to the finger-closing trajectory. A stronger force
increase while closing the fingers is correlated to a higher
stiffness. Each LSTM node has a central recurrent unit,
which has gated, recurrent connections to the input and
output layers as well as to all other LSTM nodes within
a layer. Additionally, each node has a forget gate, which
allows the node to reset its state upon specific input events.
Formally, the core update equations of a single LSTM node
c at time t are given as:

ct = gft ⊗ ct−1 + gint ⊗ σ(Wcxt +Rcht−1 + bc) (1)
ht = goutt σ(ct) , (2)

with trainable weight matrices Wc and Rc for input and
recurrent connections, and a trainable bias term bc. xt is
the input, ht the internal state, and ct the context at time t.
The gating functions g{in,f,out} are implemented as standard
neurons:

g∗t = σ∗(W∗xt +R∗ht−1 + b∗) (3)

with gate-specific, trainable weights W∗, R∗ and biases b∗.
The nonlinear activation function σ typically is the tanh.

As can be seen in Fig. 12, a typical squeezing sequence
lasted ≈14 s. We fed the network with temporal sensor
sequences comprising the phases A and B only, i.e. squeezing
and holding. The sequence start was automatically extracted
from the tactile fingertip recordings using a small touch
threshold (2% of the tip’s sensor range) to detect the first
contact of a finger squeezing the object. The end of the
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# sensor data network accuracy
1 fabric palm, old rec. [5] 12-160-7 57.77%
2 (1) + finger tips + joints 36-240-7 77.57%
3 fabric palm, new rec. 12-160-7 54.07± 4.37%
4 barometer palm 60-160-7 80.96± 2.79%
5 fabric palm, new rec. 12-160-128-64-7 63.35± 3.31%
6 barometer palm 60-160-128-64-7 91.17± 1.12%
7 (6) + finger tips + joints 84-160-128-64-7 96.62± 1.07%

random chance 14.28%

TABLE I
RECURRENT NETWORK CLASSIFICATION RESULTS.

sequence was defined by the trigger signal to relax tendons.
The input sequences were split into slices of 500 ms, which
were used to train the network in batches. Given a sampling
frequency of 100 Hz, a slice comprised 50 samples. For 5-
fold cross-validation, the set of batches was split into five
equally sized subsets.

We first trained on the same architecture as in [5], which
consisted of n sensor inputs, a hidden-layer of 160 LSTM
nodes, and 7 soft-max output units encoding the proba-
bility of the 7 different objects. The network was trained
with stochastic gradient descent (SGD) as optimizer for
50 epochs, as in [5]. The resulting prediction accuracies
obtained from cross-validation are shown with their mean
and standard deviation in the upper part of Table I. We
assured that each of the seven classes contains the same
number of samples, so the accuracy in this case is defined
as the ratio of the number of correctly classified samples
wrt. all samples. For the fabric-based sensor, the results are
close to the ones obtained in the original experiment [5]. The
new recordings (row 3) yield slightly worse results than the
original ones (row 1) due to the wear of the sensors over the
past five years. The barometer sensors (row 4) yield results
in the range of 80%, which we could achieve in [5] only by
combining the palm sensors with the more sensitive fingertip
sensors as well as finger flexion joints.

We additionally explored deeper network architectures and
employed the more recent Adam optimizer [27], now for
100 epochs. The best network performance was achieved by
augmenting the original network with two additional hidden
layers comprising 128 and 64 units with ReLu activation.
These new results are shown in the lower half of Table I.
The supplementary video demonstrates the sensor in action.

V. CONCLUSION & FUTURE WORK

We presented a barometer-based tactile skin for the
Shadow Dexterous Hand, exhibiting significant performance
improvements compared to our previous palm sensor. The
new tactile skin provides higher sensitivity, higher signal
and spatial resolution, has superb linearity and experiences
almost no hysteresis. We were able to clearly demonstrate
the superior performance of the sensor in a realistic robotic
experiment of estimating the stiffness of objects.

Our next steps will be to fully integrate and exploit the
other sensors (pre-touch, thermal imaging, IMU) for novel
robotic manipulation applications. We are also planning to
integrate the data transmission with the hand’s internal SPI-
to-EtherCAT bus to get rid of the external USB connection.
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