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Abstract— Human-automation collaborations, like automated
driving assistance and piloting drones, have become prevalent
as these technologies become more commonplace. Designers
need tools that help them understand how and why design
interventions may change the strategies of operators in such
complex human supervisory control systems. To this end, we
demonstrate that when the divergence metric is applied to
Hidden Markov Model (HMM) comparisons, it can accurately
capture statistical differences between operator strategies for
interfaces that embody different tasks. However, the use of
such an approach is problematic when used to compare HMM
strategy models with non-equivalent observations. To address
this limitation, we developed an observation reduction approach
and conducted a sensitivity analysis to assess the impact of
this approach. Our results show that when comparing two
non-equivalent interfaces, our observation reduction approach
does not fundamentally change the divergence metric, thus
allowing for direct model comparison. The results further
show that HMMs from different interfaces produce a much
higher divergence metric than model comparison from the same
people who repeatedly use the same interface. Future work will
examine if this method can detect differences in models with
different tasks or modified interfaces.

I. INTRODUCTION

Human supervisory control (HSC) is a commonly-utilized
control scheme in HRI applications where operators re-
motely manage an automated or autonomous system via
control interfaces [1], [2]. In such a scheme, many factors
can influence operators’ performances and problem-solving
strategies, including individual differences, different interface
designs, and varying levels of autonomy [3]–[5]. Other
than task performance, which can be directly observed and
measured, operators’ strategies are not directly observable
and comparable. Thus, strategy models are needed for both
comparing strategies and investigating those factors that
influence operators’ strategies.

One important application of such models is using them
to understand whether a specific design has had its intended
effect on human performance. For example, there are many
poor designs in Unmanned Aerial Vehicle (UAV) control
stations that have led to accidents [6]. A designer can use a
strategy model to objectively compare the behaviors of UAV
operators before and after a specific interface change, like
adding a new decision support system, to determine whether
the change resulted in improved strategies and overall better
system performance.
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Hidden Markov models (HMMs) have been successfully
used to model operators and systems in HSC scenarios like
UAV control because of its two-layer structure and the ability
to diagnose human-automation interactions [7]–[12]. While
HMM models can be qualitatively compared to understand
how before and after hidden states and transition probabilities
influence an operator’s problem-solving strategy, a more ob-
jective, quantitative approach is needed to determine whether
one model is statistically different from another model. To
this end, we have used the divergence as a statistical measure
of model similarity between two HMM models [13], [14],
and have shown that such a metric is stable when applied in
similar settings [15].

Comparing HMMs can be difficult if there are non-
equivalent observations. For example, one UAV interface
may produce a different set of tasks to be performed when
compared to a different UAV control station. In order to
make comparisons between models with non-equivalent ob-
servations, we propose an observation reduction approach in
which we realign observation types in the model with the
greatest number of states by collapsing observations.

To demonstrate both the use of divergence metrics and
the observation reduction approach, we develop and compare
strategy models from four human-in-the-loop experimental
sessions where operators control simulated multiple UAVs.
Using the divergence distance as a measure of similarity
between HMM models [13], the resulting divergence values
quantitatively illustrate the impacts on operators’ strategies
from the differences across the experimental scenarios. Such
differences include different participants, modified interfaces,
and systems with increased autonomy.

This paper is organized such that Section II provides
the background of related work and the HMM divergence
measure. Section III describes experiment sessions with the
model development process. Section IV shows the first two
model comparisons. Section V presents the observation re-
duction approach, while comprehensive model comparisons
are shown in Section VI. Section VII concludes this paper
with a detailed discussion.

II. BACKGROUND

Comparing operators’ performance is a simple and direct
metric for analyzing factor changes in human-automation in-
teraction scenarios [3], [16], [17]. Such metrics only provide
an aggregate summary of performance, so analyzing strate-
gies is important to understanding the causes of good and
bad performance. Some previous studies have demonstrated
the development and comparison of operators’ cognitive
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Fig. 1. The RESCHU interface - Interface 1

models in the human information processing level [18]–[21].
However, such approaches have limited access to operators’
strategies in high-level tasks. Thus, we focus on a higher
modeling level of investigating strategies by utilizing HMMs.

HMMs have been utilized as strategy models because the
two-layer structure, a hidden state layer and an observation
layer [22], [23], approximates physical actions that can be
seen and mental states that cannot be seen. We can consider a
weighted cluster of observable interactions between operators
and automation systems to be an abstract behavioral group,
which is represented by a hidden state. Thus, hidden states,
determined by clustered observations, and transitions among
hidden states can describe operators’ strategies [24], [25].

The HMM structure can be described as a tuple [22], [26],
λ = {S,O,A,B}, in which, S = {S1,S2, · · · ,SN} represents N
different hidden states, and O = {O1,O2, · · · ,OM} represents
M different observation types. A= {ai j} is a N×N transition
probability matrix, in which ai j = P{St+1

j |St
i}, and B = {bik}

is a N ×M emission matrix, in which bik = P{Ok|Si},
i, j ∈ [1,N], k ∈ [1,M]. The transition and emission matrices
connect all hidden states and observations of an HMM.

Many HMM model comparison methods have been pro-
posed and utilized for various applications [27]–[30]. How-
ever, these approaches compare HMMs with fixed model
structures and observations. Based on the primary concept
of quantitatively measuring model fitting for model compar-
isons as presented in these works, we further expanded this
concept to a more comprehensive metric by evaluating all
possible model structures. Also, since little work has focused
on HMM comparisons with non-equivalent observations, we
propose an observation reduction approach to accomplish
such comparisons.

Thus, for this effort, we focus on the divergence mea-
sure approach, which can provide a distinguishable range
of model difference measure, for quantitatively comparing
HMM models [13]. The calculation of the divergence mea-
sure is defined as:

D(λ1‖λ2) =
1

num
| log(P(Oall |λ1))− log(P(Oall |λ2))| (1)

In this equation, λ1 is the first HMM model and λ2 is the
second model. Assume

λ1 = {S1,O1,A1,B1}; λ2 = {S2,O2,A2,B2}

Fig. 2. The RESCHU-SA interface - Interface 2

λ1 contains N1 different hidden states in S1, and M1 types
of observations in O1. λ2 contains N2 different hidden states
in S2, and M2 types of observations in O2. Oall represents
all observation sequences, and num is the total number of
observations, or data points, in Oall . Also, P(Oall |λ ) is the
likelihood value of an HMM model fitting on the evaluation
dataset. For convenience and calculation efficiency, we usu-
ally take the logarithmic value log(P(Oall |λ )) to represent
the likelihood. Thus, the divergence approach measures the
likelihood difference between two HMM models applying
on a given evaluation dataset. Generally, a lower divergence
value indicates a higher model similarity level [13].

The evaluation dataset Oall is combined from the training
datasets of the two HMM models to be compared, Oλ1 and
Oλ2 , to increase the confidence of the divergence measure.
Understanding that slightly different tasks within one in-
terface or slight modifications to an existing interface may
produce different observations even if the overall interface
is generally the same, HMM models developed from such
datasets may contain different types and numbers of obser-
vations. In another word, if λ1 and λ2 are trained on datasets
collected from different interfaces, it would cause M1 6= M2.
Then, both HMM models, λ1 and λ2, will be applied on the
combined dataset Oall to calculate the divergence distance.
Since M1 6=M2, then one of P(Oall |λ1) and P(Oall |λ2) makes
this approach fail because the emission matrix of the model
with less observation types cannot cover all observations in
the dataset with a larger number of observations. To solve
this non-equivalent observation issue in the divergence cal-
culation, we investigated an observation reduction approach,
discussed in the following sections.

III. EXPERIMENTAL SESSIONS AND MODEL
DEVELOPMENT PROCESS

A. Experimental Sessions

We collected operator interaction data from four human-
in-the-loop experimental sessions where participants con-
trolled multiple UAVs to conduct high-level tasks using
two different interfaces [15], [31]–[33]. The first interface
used was the Research Environment for Supervisory Control
of Heterogeneous Unmanned Vehicles (RESCHU) platform
[34]. Shown as Interface 1 in Figure 1, RESCHU is a
simulation-based platform that allows a single operator to
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Fig. 3. Comparisons between experiments with different interfaces

control multiple UAVs in a supervisory control scenario. It
includes both UAV navigational and imagery analysis tasks
where operators focus on the map area when navigating
UAVs to different targets, and they shift their attention to
individual vehicle payload cameras that look down when a
UAV reaches a target [32]. Data from this interface included
a single experiment with 30 people [31].

Three experimental sessions were conducted using Inter-
face 2, the Security-Aware RESCHU (RESCHU-SA) plat-
form (Figure 2). Derived from RESCHU, RESCHU-SA adds
a primary task of detecting possible GPS spoofing [33].
In RESCHU-SA, once operators receive a system hacking
notification, they attempt to match a UAV camera view
against the GPS-reported position on the map to determine
potential hacking events [32]. The experiment with Interface
2 included 36 participants experiencing two experimental
sessions (Sessions 1 and 2 in Figure 3). Session 3 repeated
the same experiment but with 45 different participants.
There was no significant difference in participants’ overall
performance across these three sessions based on statistical
analyses with a significance level of α = 0.05.

As shown in Figure 3, four comparisons between strategy
models were conducted to quantitatively measure the poten-
tial differences between the four experimental sessions. In
Comparison 1, strategy models from the two experimental
sessions from Interface 2 were compared because the inter-
face and tasks were the same and the participants were the
same. Thus, the expectation is that the divergence measure
would be the least. For Comparison 2, we compared the
same interface and same task, but with different groups
of people, and our expectation was that this comparison
would yield an increased divergence measure. Comparisons
3 and 4 were expected to have the highest divergence
distances because the participants, interfaces and tasks were
all different. However, because the two different interfaces
included different observations, we needed to formulate an
observation reduction approach to be able to calculate the
divergence measure.

TABLE I
HMM OBSERVATIONS FROM BOTH EXPERIMENT PLATFORMS

Observations in both RESCHU and RESCHU-SA platform

1 Add waypoint 2 Move waypoint 3 Delete waypoint

4 Move endpoint 5 Switch target 6 Engage task

7 Monitor UAV

Hacking detection observations only in the RESCHU-SA platform

8 Perceive hacking 9 Detection decision 10 Adjust zoom level

B. Model Development Process

HMM strategy models were developed based on opera-
tors’ actions (i.e., observations) collected during experiment
sessions as listed in Table I. Given that the original RESCHU
platform (Interface 1) only includes two major tasks of
navigation and image analysis for targets, the first experiment
dataset only contains observations 1−7 in Table I. The task
of UAV hacking detection was added in the RESCHU-SA
platform, resulting in ten observations, 1−10 in Table I.

HMM models were trained using the unsupervised multi-
sequence Baum-Welch algorithm [22], which is a common
expectation-maximization (EM) algorithm, and evaluated by
the Bayesian Information Criterion (BIC) [35], which bal-
ances the model generalizability and complexity. To increase
the confidence of the training results, over 100 randomly
generated initializations were used for each specific model
structure with a certain number of hidden states, and the
resulted model with the highest likelihood was selected.

IV. COMPARISONS WITHIN THE RESCHU-SA
INTERFACE

To quantitatively determine the probabilistic difference
between two models, we first focused on comparing the
two experimental sessions conducted on the RESCHU-SA
interface with the same participants (Comparison 1), and
then with different participants (Comparison 2). Comparison
1 should result in the least difference between the strat-
egy models when compared with Comparison 2. The 10
RESCHU-SA platform observations, shown in Table I, were
used for all comparisons in this section.

Given the fact that divergence metrics can be different
depending on the subjective interpretation of the BIC curve
and selection of hidden states, divergence value meshes
were plotted that depict the divergence values for model
comparison across the number of all possible hidden states.
Understanding that the RESCHU-SA interface provides three
primary tasks, we consider that the minimum hidden state
number in model comparisons is 3. Also, given that hidden
states represent abstract cognitive groupings, the maximum
number of hidden states should not be greater than the num-
ber of observation types, which is 10. Thus, such calculations
can depict not only a central measure but also the variation,
which would indicate the stability of a particular selection
of model structures.
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Fig. 4. Divergence value meshes for Comparisons 1 and 2

Figure 4 plots the mesh for Comparison 1 and 2, and
both their divergence averages are 0.045 with (SD (standard
deviation) = 0.029) and (SD = 0.033) respectively. A non-
parametric Mann-Whitney test with a significance level of
α = 0.05 showed no significant difference between these
two divergence value distributions (p = 0.768). Given that
both experiments had over 35 participants, the high similarity
between Comparisons 1 and 2 indicates that different par-
ticipant groups introduce limited variability in participants’
overall strategies between experimental sessions with the
same interface. These results align with the experimental data
in that there was no significant difference in participants’
overall performance. This data also establishes that in terms
of human-in-the-loop performance in an HSC system, what
it means to be similar can be roughly measured at 0.045.

As depicted in Figure 4, there are two remaining compar-
isons of interest which aim to assess the probabilistic dif-
ference between two different interfaces with different tasks.
However, this comparison is not straightforward since the
RESCHU interface only has 7 observations and RESCHU-
SA has 10. The next section explores an observation reduc-
tion approach that was used to enable such a comparison.

V. THE OBSERVATION REDUCTION APPROACH

In order to compare HMM models using the divergence
measure in Equation (1), there need to be equivalent numbers
of observations. To address this, we proposed an observation
reduction approach, which modifies the selection criteria of
observation types for training data and reduces observations
for the HMM model with a higher number of observations.
So, in the previous example, the experiment with 10 ob-
servations needs to be reduced to 7. Recall the notation in
the previous sections, λ1 has M1 types of observations and
λ2 has M2 observation types. Assume M1 < M2 so that the
first model has fewer observations than the second model. To
align the observation types, data points in the training dataset
of λ2, Oλ2 , are re-screened to match the M1 observation types
as the dataset of λ1, Oλ1 .

TABLE II
OBSERVATION REDUCTION CRITERIA FOR THE SENSITIVITY TEST

Index 7 Obs 8 Obs 9 Obs 10 Obs

1 Add waypoint

2 Move waypoint

Same as 7
Obs

Same as 7
Obs

Same as 7
Obs

3 Delete waypoint

4 Move endpoint

5 Switch target

6 Engage task

7 Hacking
detection

Monitor
UAV

Monitor
UAV

Monitor
UAV

8 - Hacking
detection

Hacking
detection

Perceive
hacking

9 - - Adjust
zoom level

Detection
decision

10 - - - Adjust
zoom level

A. The Viterbi Propagation with Observation Reduction

With this observation reduction approach, the number of
observations in λ1 and λ2 are aligned to M1 that the dataset
Oλ2 is reformulated to M1 types of observations as Oλ1 . Thus,
the emission matrices of λ1 and λ2 share the same number
of columns, M1. Applying λ1 and λ2 to a one-dimensional
sequence Oseq1 = (o1,o2, · · · ,ot), the Viterbi propagation in
Equation (1) can be updated for both models.

Vλ1:t,st = max
st∈S1

(bλ1:st→ot ·aλ1:st−1→st ·Vλ1:t−1,st−1) (2)

Vλ2:t,st = max
st∈S2

(bλ2:st→ot ·aλ2:st−1→st ·Vλ2:t−1,st−1) (3)

Given that both models contain M1 types of observation, they
share same expectations of emission probabilities.

In an HMM model, a higher number of hidden states
could lead to a lower expectation of state transition prob-
abilities and a highly differentiated model structure with a
higher model complexity. However, high hidden state number
could cause high corresponding emission probabilities. Thus,
regardless of the number of hidden states, different model
structures would only bring limited influence to the product
of ast−1→st ·Vt−1,st−1 if models share the same number and
type of observation.

Therefore, the difference in model likelihood values be-
tween both HMM models in Equation (2) and (3) would only
be affected by the underlying patterns in the dataset, rather
by the Viterbi algorithm propagation process. In this case,
the divergence measure value, which is directly calculated
from log(P(Oall |λ1)) and log(P(Oall |λ2)), will reflect the
quantitative measure of the similarity level between the two
models more precisely.

B. The Observation Reduction Sensitivity Test

To understand the reliability of such an observation re-
duction approach, a sensitivity test was conducted to assess
how collapsing observations impacted the overall divergence
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Fig. 5. Divergence value meshes between Sessions 1, 2, and 3 based on
different observation reduction criteria and all possible hidden state numbers

Fig. 6. Divergence value boxplots of model comparisons between Sessions
1, 2, and 3 based on different observation reduction criteria

distance metric. Considering that collapsing observations
may cause loss of information, it is necessary to ensure col-
lapsing certain observations would not significantly change
the divergence metrics.

Datasets from the RESCHU-SA interface, including Ses-
sion 1, 2, and 3, were used with the 10 types of observations
as shown in Table I. Understanding that Session 1 and 2
had same participants and Session 3 had another group of
participants, further comparisons between different interfaces
require the combined dataset of Session 1 and 2 and the
Session 3 dataset. Thus, the sensitivity test was conducted
on datasets from these three sessions. Given that the hacking
detection task was uniquely embedded in the RESCHU-SA
platform, we combined hacking detection-related observa-
tions based on different levels of abstraction. In order to
understand the impact of collapsing the data from 10 to 7
observations, the revised data selection criteria for 7, 8, and
9 observations are shown in Table II.

With the revised observation-reduced models from Table
II, HMM strategy models with all possible numbers of hid-
den states were retrained on the realigned datasets using the
same methods discussed in the model development section.
Then, visualizations of divergence measures between the
HMM models were created, composed of divergence values
from all possible combinations of model comparisons based
on the different number of hidden states.

Fig. 7. Divergence value meshes of operator strategy model comparisons
across all experimental sessions

Fig. 8. Divergence value boxplots of operator strategy model comparisons
across all experimental sessions

As shown in Figure 5, two divergence meshes represent
the 7 and 10 observation model comparisons from the
two RESCHU-SA sessions with corresponding observation
reduction criteria. The 8 and 9 states were omitted for clarity
but shared the same space. Quantitatively, the ranges of the
average divergence values of these four meshes are all within
0.02− 0.05 (Figure 6). Mann-Whitney tests with a family-
wise significance level of ∼ 0.008 (0.05/6) were conducted
on the divergence values between two meshes. The statistical
results show that the distribution of divergence values of
both 8 and 9 observations meshes are significantly lower
than the divergence distribution in the 10 observations mesh
(both p < 0.001). However, the value distribution in the 7
observations mesh is not significantly different from the 10
observations mesh (p = 0.017 > 0.008).

Thus, although the observation reduction criteria of 8 and 9
observations may change the underlying patterns in datasets
and affect model comparisons with the original dataset of
10 observations, the reduction criteria of 7 observations only
introduce limited influence to the divergence measures. In
this case, all hacking detection related observations could be
collapsed to a single observation. In other words, the observa-
tion selection criterion for RESCHU-SA experiment models
can follow the 7-observation rule instead of the original 10
observations without significant loss of information.
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TABLE III
REVISED HMM OBSERVATIONS FROM BOTH EXPERIMENT PLATFORMS

1 Add waypoint 2 Move waypoint 3 Delete waypoint

4 Move endpoint 5 Switch target 6 Engage task

RESCHU 7 Monitor UAV

RESCHU-SA 7 Hacking detection

VI. COMPARISONS BETWEEN THE RESCHU AND
RESCHU-SA INTERFACES

Based on the observation reduction sensitivity test from the
previous sections, the model comparison with the original 10
observations was not significantly different from the modi-
fied 7 observations. Thus, we can compare HMM strategy
models between RESCHU-SA using 7-observation reduction
criterion and RESCHU with the original 7 observations as
shown in Table III.

Comparison 3 focuses on the difference between RESCHU
and RESCHU-SA with one group of people and Compari-
son 4 also examined the difference between RESCHU and
RESCHU-SA, but with a different group of people. The
expectation is that such divergence distance metrics should
be similar between them but very different from Comparisons
1 and 2.

The divergence value meshes shown in Figure 7 illus-
trate the differences in strategy models developed between
RESCHU and RESCHU-SA interfaces across the 4 compar-
isons, and their means and standard deviations are plotted in
Figure 8. For Comparisons 3 and 4, both divergence meshes
range between 0.40−0.75, which indicates a relatively large
difference. The average for Comparison 3 is 0.563 (SD =
0.078), while Comparison 4 average is 0.553 (SD = 0.067).
These two meshes interleave, and a Mann-Whitney test
shows no significant difference (p= 0.691) between the two,
which agrees with the expectation that they would be similar.
Also, such a high similarity level between Comparison 3 and
4 supports the fact that different participant groups across
the same interface would only bring limited variance to the
general strategies.

One important comparison to be made in Figure 7 is
between the clustering of Comparisons 1 and 2 and Com-
parisons 3 and 4. It is clear that the divergence distance
metric not only accurately captures differences between two
interfaces, but this difference is relatively consistent across
Comparisons 3 and 4. Understanding that the RESCHU-SA
interface contains an additional primary task of UAV hacking
detection, which is not provided in the original RESCHU
platform, participants using RESCHU-SA had quantitatively
different strategies and behavioral patterns comparing to
those using RESCHU.

Another element of Figure 7 worth noting is that the
meshes of Comparisons 1 and 2 are relatively flat. This
flatness indicates model stability in capturing operators’
general strategies with three or more hidden states when
two scenarios share the same interface and primary tasks.

Meanwhile, the meshes of Comparison 3 and 4 are relatively
uneven across comparisons with all possible hidden states.
So, comparisons of HMM strategy models with different
interfaces may be less stable, which could be a result
of the non-equivalent observation manipulations. Further
studies will investigate how such manipulations affect the
quantitative measures.

Figure 8 illustrates a range of what divergence metrics can
likely capture. In this analysis, the most similar comparison
was between the same people using the same interface for the
same tasks, Comparison 1. Comparisons 3 and 4, which had
almost identical mean divergence metrics, looked at different
interfaces and tasks with different people. The overall differ-
ence in these means is about 0.500− 0.520. Understanding
that different groups of operators only introduce limited
variance to the divergence metrics, such an overall mean
difference is a quantitative similarity metric of adding an
additional primary task in an HSC scenario. However, it
remains to be seen whether this relative difference holds
between other interfaces with different tasks and how it can
be leveraged in various applications, which is also a future
research direction.

VII. DISCUSSION AND CONCLUSION

Given that operator strategy models could help researchers
investigate operators’ strategies with varying HRI system
designs, quantitative comparisons between models from dif-
ferent supervisory control scenarios may provide a more
objective basis for assessment. In this effort, we developed
and compared strategy models from four human-in-the-loop
experimental sessions with varying degrees of difference,
including different participant groups, experimental tasks
and interfaces. To allow for model comparisons with non-
equivalent observations using the HMM divergence measure,
we proposed an observation reduction approach and justified
it with a set of sensitivity tests.

The model comparison results show that the divergence
distance approach can quantitatively capture differences in
HMM strategy models, including when people use different
interfaces. This ability to detect such a difference is espe-
cially important given the fact that the RESCHU-SA was
derived from the RESCHU platform.

One caveat in this effort is that this approach was not able
to capture a probabilistic difference in models when different
groups of people used the same interface, so there is likely
a lower limit of a just noticeable difference. What remains
untested in this effort, and is the subject of future work, is
whether this method can detect changes in strategies when
there are different tasks in the same interface or modified
interfaces.

In addition to this future work, more effort is needed
to further investigate issues surrounding the observation
reduction approach. Information loss occurs when observa-
tions are collapsed, which could be important in signaling
important model differences. So, further studies are needed
to investigate such an approach for non-equivalent model
datasets and other HSC applications.
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Lastly, observation reduction can be a subjective process
so knowing which observations to reduce and determining
when a reduction loses critical information is also an area of
future work. While such models are intended to primarily
diagnose whether changes in a system lead to detectable
changes in operator strategies, another area that deserves
further investigation is whether the utilization of a divergence
metric could be used to predict future performance based on
the strategy changes, which has clear safety implications for
many HSC systems.
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estimation based on hidden Markov model motion validation for safe
flexible robotized warehouses,” Robotics and Computer-Integrated
Manufacturing, vol. 57, pp. 182–196, 2019.

[12] R. Fu, H. Wang, and W. Zhao, “Dynamic driver fatigue detection using
hidden Markov model in real driving condition,” Expert Systems with
Applications, vol. 63, pp. 397–411, 2016.

[13] B.-H. Juang and L. R. Rabiner, “A probabilistic distance measure for
hidden Markov models,” AT&T Technical Journal, vol. 64, no. 2, pp.
391–408, Feb. 1985.

[14] J. Silva and S. Narayanan, “Average divergence distance as a statistical
discrimination measure for hidden Markov models,” IEEE Transac-
tions on Audio, Speech, and Language Processing, vol. 14, no. 3, pp.
890–906, 2006.

[15] H. Zhu and M. L. Cummings, “The stability of human supervisory
control operator behavioral models using hidden Markov models,” in
2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2019, pp. 6971–6978.

[16] H. A. Yanco, A. Norton, W. Ober, D. Shane, A. Skinner, and J. Vice,
“Analysis of human-robot interaction at the darpa robotics challenge
trials,” Journal of Field Robotics, vol. 32, no. 3, pp. 420–444, 2015.

[17] B. Sadrfaridpour, H. Saeidi, J. Burke, K. Madathil, and Y. Wang,
“Modeling and control of trust in human-robot collaborative manu-
facturing,” in Robust Intelligence and Trust in Autonomous Systems.
Springer, 2016, pp. 115–141.

[18] J. N. Marewski and K. Mehlhorn, “Using the ACT-R architecture to
specify 39 quantitative process models of decision making,” Judgment
and Decision making, vol. 6, pp. 439–519, 2011.

[19] S. Prezenski, A. Brechmann, S. Wolff, and N. Russwinkel, “A cog-
nitive modeling approach to strategy formation in dynamic decision
making,” Frontiers in Psychology, vol. 8, p. 1335, August 2017.

[20] C. Gonzalez, V. Dutt, A. F. Healy, M. D. Young, and L. E. Bourne Jr,
“Comparison of instance and strategy models in ACT-R,” in Proceed-
ings of the 9th International Conference on Cognitive Modeling (ICCM
2009), A. Howes, D. Peebles and R. Cooper (Eds.), Manchester, UK,
2009.

[21] R. Geng and J. Tian, “Improving web navigation usability by com-
paring actual and anticipated usage,” IEEE Transactions on Human-
Machine Systems, vol. 45, no. 1, pp. 84–94, 2014.

[22] L. E. Baum and T. Petrie, “Statistical inference for probabilistic
functions of finite state Markov chains,” The Annals of Mathematical
Statistics, vol. 37, no. 6, pp. 1554–1563, 1966.

[23] L. R. Rabiner, “A tutorial on hidden Markov models and selected
applications in speech recognition,” Proceedings of the IEEE, vol. 77,
no. 2, pp. 257–286, Feb. 1989.

[24] Y. Boussemart, M. L. Cummings, J. L. Fargeas, and N. Roy, “Su-
pervised vs. unsupervised learning for operator state modeling in
unmanned vehicle settings,” Journal of Aerospace Computing, Infor-
mation, and Communication, vol. 8, no. 3, pp. 71–85, 2011.

[25] V. Rodrı́guez-Fernández, A. Gonzalez-Pardo, and D. Camacho, “Find-
ing behavioral patterns of UAV operators using multichannel hidden
Markov models,” in 2016 IEEE Symposium Series on Computational
Intelligence (SSCI). IEEE, 2016, pp. 1–8.

[26] L. R. Rabiner and B.-H. Juang, “An introduction to hidden Markov
models,” IEEE Acoust., Speech, Signal Processing Mag., vol. 3, no. 1,
pp. 4–16, Jan. 1986.

[27] S. M. E. Sahraeian and B.-J. Yoon, “A novel low-complexity HMM
similarity measure,” IEEE Signal Processing Letters, vol. 18, no. 2,
pp. 87–90, 2011.

[28] Y. Qi, J. W. Paisley, and L. Carin, “Music analysis using hidden
Markov mixture models,” IEEE Transactions on Signal Processing,
vol. 55, no. 11, pp. 5209–5224, 2007.

[29] C. Bahlmann and H. Burkhardt, “Measuring HMM similarity with the
Bayes probability of error and its application to online handwriting
recognition,” in Proceedings of Sixth International Conference on
Document Analysis and Recognition (ICDAR). IEEE, 2001, pp. 406–
411.

[30] N. Nguyen-Duc-Thanh, S. Lee, and D. Kim, “Two-stage hidden
Markov model in gesture recognition for human robot interaction,”
International Journal of Advanced Robotic Systems, vol. 9, no. 2, p. 39,
2012.

[31] M. Cummings, L. Huang, H. Zhu, D. Finkelstein, and R. Wei,
“The impact of increasing autonomy on training requirements in a
UAV supervisory control task,” Journal of Cognitive Engineering and
Decision Making, vol. 13, no. 4, pp. 295–309, 2019.

[32] H. Zhu, M. Elfar, M. Pajic, Z. Wang, and M. L. Cummings, “Hu-
man augmentation of UAV cyber-attack detection,” in International
Conference on Augmented Cognition. Springer, 2018, pp. 154–167.

[33] H. Zhu, M. L. Cummings, M. Elfar, Z. Wang, and M. Pajic, “Op-
erator strategy model development in UAV hacking detection,” IEEE
Transactions on Human-Machine Systems, vol. 49, no. 6, pp. 540–549,
2019.

[34] B. Donmez, C. Nehme, and M. L. Cummings, “Modeling workload
impact in multiple unmanned vehicle supervisory control,” IEEE
Transactions on Systems, Man, and Cybernetics-Part A: Systems and
Humans, vol. 40, no. 6, pp. 1180–1190, Nov. 2010.

[35] G. Schwarz et al., “Estimating the dimension of a model,” The Annals
of Statistics, vol. 6, no. 2, pp. 461–464, 1978.

10974


