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Model-Free, Vision-Based Object Identification and Contact Force
Estimation with a Hyper-Adaptive Robotic Gripper

Waris Hasan, Lucas Gerez, and Minas Liarokapis

Abstract—Robots and intelligent industrial systems that
focus on sorting or inspection of products require end-effectors
that can grasp and manipulate the objects surrounding them.
The capability of such systems largely depends on their ability
to efficiently identify the objects and estimate the forces exerted
on them. This paper presents an underactuated, compliant, and
lightweight hyper-adaptive robot gripper that can efficiently
discriminate between different everyday life objects and esti-
mate the contact forces exerted on them during a single grasp,
using vision-based techniques. The hyper-adaptive mechanism
consists of an array of movable steel rods that get reconfigured
conforming to the geometry of the grasped object. The proposed
object identification and force estimation techniques are model-
free and do not rely on time consuming object exploration. A
series of experiments have been carried out to discriminate
between 12 different everyday life objects and estimate the
forces exerted on a dynamometer. During each grasp, a series
of images are captured that detect the reconfiguration of the
hyper-adaptive grasping mechanism. These images are then
used by an image processing algorithm to extract the required
information about the gripper reconfiguration, classify the
object grasped using a Random Forests (RF) classifier, and
estimate the amount of force being exerted. The employed RF
classifier gives a prediction accuracy of 100%, while the results
of the force estimation techniques (Neural Networks, Random
Forests, and 3rd order polynomial) range from 94.7 % to 99.1%.

I. INTRODUCTION

Grippers and hands allow robots to efficiently interact with
their surroundings by grasping and manipulating different
objects or parts of the environment. However, identifying an
object whose the geometry is unknown, remains an important
challenge that has not yet been addressed satisfactorily [1],
[2]. The main issue with conventional and adaptive grippers
is that they first need to detect the shape of the object and
then based on the shape or the orientation of the object
to execute the grasp using an appropriate grasp planning
scheme. To do that, the gripper may have to approach objects
with different geometries from different angles and to employ
sophisticated sensing and control algorithms [1].

Over the last decade, many different techniques and
sensors have been used to discriminate between different
everyday life objects and measure the contact forces exerted.
Typically, object identification is accomplished using image
analysis techniques, tactile sensing solutions, or a combina-
tion of both [3]-[6]. However, the performance of a vision
system may be hindered by occlusions (the gripper usually
covers a significant part of the surface of the grasped object),
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Fig. 1. The employed hyper-adaptive robotic gripper grasping an object
and conforming to its geometry. The gripper conforms to the shape of the
object due to its highly adaptive structure. A vision-based algorithm tracks
the motion of each pin to estimate its displacement. The displacements of the
pins are used in order to perform object identification for a set of everyday
objects and to estimate the contact forces exerted during grasping.

poor lighting conditions (dark environments), or limited
fields of view [7]. Furthermore, the most common approach
to extract the 3D model of an object is by employing spe-
cialized vision systems that require complex computations
and multiple bulky and expensive cameras, while the results
are not always as accurate as desired [8].

In this paper, we employ a hyper-adaptive robotic gripper
that can efficiently conform to the shape of the grasped
object due to its highly adaptive nature (Fig. 1) and image
analysis techniques to perform a simultaneous learning based
object identification and contact force estimation during a
single grasp. The image analysis algorithm tracks the motion
of each pin of the hyper-adaptive design to discriminate
between different everyday objects and estimate the contact
forces applied to them. The efficiency of the proposed
methods has been experimentally validated using a series
of experiments that involve the identification of objects with
a single grasp and the estimation of the forces exerted on
a dynamometer (while it is grasped). This study tackles
the object identification problem by employing the change
in the shape of the hyper-adaptive grasping mechanism to
discriminate between different object shapes instead of trying
to identify them with a vision system (e.g., with point-cloud
data). To do that, it employs a simple 2D camera that is used
to extract information about the reconfiguration of the finger
structure, effectively reconstructing the object shape. The use
of the hyper-adaptive gripper together with the proposed
vision-based scheme makes the system model-free and it
allows the classification of the grasped object in an open-
loop fashion during a single grasp.
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The rest of the paper is organized as follows: Section
IT presents the related work on object classification and
identification, Section III presents the gripper and discusses
the computer vision system proposed, Section IV details the
experiments, Section V presents the results, while Section VI
concludes the paper and discusses some future directions.

II. RELATED WORK

Over the past few years, numerous studies have explored
ways of identifying everyday life objects / tools, deriving
their properties [3], [4]. The two most commonly used
approaches employ vision-based sensing and tactile sensing.
However, the choice is highly dependent on the environment,
the type of application, and the type of robotic gripper being
used [3]. In general, computer vision systems that have been
employed in robotic grasping and dexterous manipulation
depend on the camera type, the camera placement, and
the number of cameras. In [9], the authors discuss the
importance of these factors and their effect on the design
of vision algorithms. They use eye-in-hand and stand-alone
stereo camera systems to develop strategies to detect and
grasp both known and unknown objects. In [10], the authors
present a vision-based algorithm that uses two 3D cameras to
generate a contour of the target object by combining partial
point clouds from each camera. This algorithm detects the
geometry of unknown objects and runs a virtual exploration
on the partial point cloud to calculate the force balance
computations on different planes, allowing it to determine
the most stable grasp. In [11], two cameras and a linear
laser generator were used to form a 3D model of the object
under consideration, using point cloud data. Grasp planning
was accomplished virtually by approaching the object using
different grasp configurations. The drawback of this solution
is the excessive amount of time that is required to compute
the grasp configurations. In [12], the authors used a stereo
vision system to determine the 3D geometry of objects and
then used the localized model of an object to plan the
grasp. Their vision system is limited to detecting rectangular
prisms only. A 2D laser range finder was used in [13] to
classify seven different objects, and the results show that
this system is much more reliable and accurate than using a
traditional laser beam scanner and a CCD (charge-coupled
device) camera to classify objects. In [14], the authors used
two cameras to find the distance to the object by triangulation
instead of constructing a 3D model. The identification of the
object and the identification of grasping points on the object
surface had a success rate of 90% for known objects.

Other than detecting the geometry and the edges of rigid
objects, computer vision has also been widely used to mea-
sure the applied forces and deformations of elastic objects
being grasped. In [15], the authors used computer vision
algorithms to monitor the characteristics of various soft,
deformable objects, and then they modelled and predicted
their behaviour when manipulated by a robotic gripper. In
[16], the authors used data from RGB images and a Microsoft
Kinect depth sensor to classify various non-rigid objects
based on their material properties with classification success

rate up to 98.3%. In [17], the authors propose a 3D vision
algorithm that can monitor deformations in non-rigid objects.
The experimental results show that such a system is robust
in real-time tracking of the surface deformations.

The general problem that has been encountered in most of
these studies is the selection of the most stable grasp from a
wide range of possible grasps. Some of the aforementioned
studies used 2D or 3D models of the objects for grasp
determination, while others relied on the assumption that
the objects under consideration belong to a particular set
of shape primitives (cylinders, boxes, etc.). Using such an
approach, they managed to minimize the number of possible
grasps. However, these approaches only work well when the
objects are both not occluded and well separated from the
background [18]. This problem is highlighted in [18], where
the authors propose a purely vision-based solution that is
model-free. The proposed 3D algorithm can automatically
select the most stable grasp for the objects from the po-
tential grasps which are generated using surfels. In [19], a
compliant, under-actuated robotic gripper with eight force
sensors embedded in each finger is used. The authors propose
a methodology that discriminates between everyday objects
using a single grasp of the employed gripper (exploiting
its reconfiguration) without any prior information about the
gripper model or the object. The results show that such a
methodology is able to identify objects with high accuracy.

The approach of this study is inspired by a previous
work, detailed in [20], which presents a two-fingered, under-
actuated gripper that has hyper-adaptive finger pads that
can adapt to the shape of the object being grasped. This
design allows model-free classification, which means that the
controller parameters do not affect the classification process,
unlike most of the studies discussed above. Apart from tactile
sensors on the finger pads, they also used a Google Soli
radar sensor to identify a set of different materials. More
precisely, they used 20 different features to discriminate
between 26 different objects with a classification accuracy
of over 99%. The drawback of using tactile sensors in this
particular design is that these sensors cover a considerable
amount of area on the hyper-adaptive region, reducing the
efficiency of the proposed design. Moreover, due to the size
and wiring limitations, tactile sensors cannot be used to
measure the contact force on each pin of the mechanism.

Thus, this study aims to estimate the force exerted by the
pins and the displacement of each pin in the hyper-adaptive
gripper surface by using computer vision algorithms, allow-
ing also for identification of the grasped object. Hence, the
proposed computer vision technique aims to address most of
the aforementioned issues by processing 2D images from a
single camera, which unlike 3D modelling does not require
heavy computations [8]. Additionally, since this technique
does not identify the objects by directly taking their pictures,
but relies on the change in the shape of the hyper-adaptive
gripper, it is free from any issues caused by occlusions during
grasping. The camera can be enclosed within the hyper-
adaptive region of the gripper since it only needs to capture
images from the finger backside.
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Fig. 2. The hyper-adaptive finger-pad consists of a 5x12 array of thin steel
rods (60 in total) with a compliant rubbery tip made out of Smooth-On
PMC-780 urethane rubber. The rubbery tip increases the friction between
the finger and the object. These pins are displaced when the object is pressed
against them. The steel rods are pushed passively back to their original
positions by the silicone springs (made out of Smooth-On Ecoflex 00-30).
The tips of the silicone springs have plastic caps that accommodate colored
dots that are used for vision-based reconfiguration estimation.

III. DESIGN AND METHODS

A. Hyper-adaptive Gripper

The term ‘hyper-adaptive’ refers to the ability of the
gripper to efficiently conform to the shape of different objects
because of its highly adaptive nature. In particular, this
design improves the grasp stability when compared to the
conventional adaptive grippers by increasing the number of
contact points, as shown in Fig. 2. The hyper-adaptive gripper
does not require the use of accurate grasp planning methods.
The gripper was developed using 3D printed parts and simple
materials. The gripper has a stationary hyper-adaptive thumb
and an adaptive, tendon-driven, articulated finger. The design
is based on the M2 gripper of the Yale OpenHand project
[21], [22]. The hyper-adaptive pads on the thumb consist of
a 5x12 array of thin steel rods (60 in total) with a compliant
rubbery tip made out of polyurethane rubber (Smooth-On
PMC-780) that increases the friction between the finger and
the object. A higher number of steel rods means a higher
resolution and a more stable grasp [23]. The proposed hyper-
adaptive gripper has more than two times the number of pins
of the previous version of the gripper described in [20]. These
pins are displaced when the object is pressed against them
by the articulated finger and pushed back to their original
positions when the object is released. On the rear end of
the thumb, a continuous block of silicone (made out of
Smooth-On Ecoflex 00-30) was placed. It has a 5x12 array
of deformable silicone molds (one for each steel rod). These
silicone molds act as springs so that the displaced steel rods
can return to their original positions when the articulated
finger stops exerting forces on the object. Small 3D printed
caps were placed in between the silicone springs and the
steel rods to keep the steel rods from puncturing the silicone
springs. The caps were printed to have bright colors so that
they are easily visible through the silicone springs, and a
camera can track their movement.

The design is completely modular and any part of the
gripper can be easily disassembled for repair or replacement.
The gripper operates using two Dynamixel MX-64AR mo-
tors that are connected to the base. A separate motor was
used for each joint. The gripper was designed to have a
fixed hyper-adaptive thumb opposing an articulated, adaptive
finger, facilitating the camera and image processing set up.
If an articulated, hyper-adaptive finger is selected, more than
one camera will be required to extract pin displacement
data from the different phalanges. The articulated finger was
designed to have two spring-loaded pin joints (one at the
base and one between the two finger phalanges), and the
finger pads were made out of compliant material (Smooth-
On Vytaflex 30) to have a firm grip on the object.

B. Vision-Based Reconfiguration Estimation

The methodology proposed in this paper uses a single
camera with a fixed position and a field of view containing
the back of the hyper-adaptive robot finger to detect and
measure the slightest displacements / reconfigurations of
the steel rods from their rest positions. The gripper is
connected to the end-effector of a URS robot arm (Universal
Robots, Odense, Denmark). A diffused light source is used
to provide an even, soft illumination from all angles without
any reflections. The proposed methodology consists of the
following steps:

« A reference image is captured by a 12-megapixel cam-
era when the hyper-adaptive robotic gripper is at rest
(not grasping any object).

e The lens of the camera is fixed at an angle to the
backside of the hyper-adaptive finger, detecting the
coloured caps, as shown in Fig. 3 (this allows the 3D
rectilinear movement of the steel rods to be captured in
a 2D image).

« Pixels representing the centre of each coloured cap are
located in the image taken in step 2.

« Images are captured during the whole process of object
grasping, keeping the pose of the camera fixed with
respect to the gripper. The centers of the caps are
recorded during the reconfiguration of the fingers.

« The distances between the initial and the final positions
of the centers of the colored caps are calculated. These
distances represent the relative lengths by which the
steel rods have been displaced by the object (white lines
in Fig. 3).

The image processing algorithms have been developed

in C++ using the Open-CV open-source computer vision
library. The details of the image processing are as follows:

1) Colored Caps Detection: It is crucial to precisely
detect all 60 caps from the captured image because
all other steps of the algorithm depend on the accurate
detection of the caps. The bright colors of the caps
(red and green) are significantly distinctive from any
other color in the image, therefore, the areas of the
pixels representing these caps can be easily detected
using simple color based detection. The input images
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Fig. 3. The displacement of each pin is determined by calculating the centre
pixel in the resting and final grasping position for each cap and measuring
their distance. This distance represents the length by which the steel rod
was displaced by the object (white line).

are converted into binary images through HSV color
thresholding. These binary images are then sequen-
tially passed through Erosion, Dilation, and Gaussian
Blur filters to remove any remaining parasitic noise
and to prepare them for Canny Edge Detection. Canny
Edge Detection allows us to detect the exact location
of each cap in the binary images.

2) Detection of the Centers of Caps: It can be seen
in Fig. 4 that the edges of the caps that are detected
by the Canny Edge Detector are not exact circles, but
they have irregular shapes. Because of this, it is very
difficult to find the pixels that are exactly at the centre
of these irregular shapes. The solution is to draw a
minimum enclosing circle around the detected edges of
each cap and the centres of these minimum enclosing
circles to be the centres of the caps. The algorithm
predicts the displacement of the caps by calculating
the displacement of these centre pixels.

3) Sorting the Centers of Caps: The centre pixels of
the resting image (initial image) and the final grasping
image of the gripper are stored in separate arrays and
then the corresponding centre pixels are compared to
calculate distances (centre pixels representing the same
cap in both images). For example, the centre pixel of
the top right cap in the resting image needs to be
compared with the centre pixel of the top right cap
in the final grasping image. To be able to do that, the
centre pixels from resting and final grasping images
of the gripper need to be stored in the same sequence

Fig. 4. Distance calculation between the centre pixels of the corresponding
caps in the resting and final grasping images of the gripper. The black
lines represent the displacements of the pins while grasping an object
superimposed to the original image of the gripper. In subfigure b), the caps
and their centre pixels are represented with light green and light red circles
in the resting states and with dark green and dark red circles when they
are in the final grasping states. The resting and grasping positions of the
caps have been superimposed to demonstrate the process of calculating the
distances between the corresponding centre pixels.

in the arrays. This is achieved by applying a sorting
mechanism on the arrays that store the centre pixels.
Sorting is the main reason to choose two coloured caps
(red and green) because different coloured caps can be
detected and sorted independently making the sorting
process modular, easier, and efficient. The sorting is
done in three steps: i) Sorting the centre pixels from
left to right (based on their x coordinates), allowing
the separation of the centre pixels into five different
columns, ii) adding the centre pixels of each column in
a separate array to have better control over the sorting
process, and iii) sorting the centre pixels in each array
from top to bottom (based on their y coordinates).

4) Calculating the Distances between Initial and Final
Centers of Caps: Once all the required centre pixels
have been stored and sorted in the arrays, these arrays
can be compared to find the Euclidean distances be-
tween the corresponding centre pixels in the resting
and final grasping images of the gripper. This process
can be seen in Fig. 4, where the black lines represent
the displacements of the pins, the light green and the
light red circles represent the centre pixels when the
gripper is at a resting state and the dark green and the
dark red circles represent the centre pixels when the
gripper is at the final grasping state. The resting and
final grasping states have been blended in Fig. 4-b)
to demonstrate the process of calculating the distances
between the corresponding centre pixels.
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Fig. 5. Set of objects that were used in the grasping experiments. The
dimensions of the everyday objects used can be found in [24]. The 3D
printed objects have the following dimensions: 10x35x50 mm, 22x35x50
mm, 32x35x50 mm, and 50x35x50 mm.

C. Learning to Identify Objects and Estimate Contact Forces

In order to formulate object identification as a classifi-
cation problem, a non-linear supervised machine learning
method was employed, a Random Forest (RF) classifier. RF
is a supervised learning algorithm and an ensemble classifier
that consists of many decision trees and was originally
proposed by Tin Kam Ho of Bell Labs [25] and Leo Breiman
[26]. The final output of an RF classification model is the
most popular class among all the trained decision trees. The
RF model was trained with 100 trees. The feature space used
consists of 60 features corresponding to the displacements
of the 60 steel rods in each image. For force estimation,
a RF regression model was used. The output of the RF
regression model is the average output of all the trees. The
RF regression model was trained again with 100 trees and
the same features (the output was the force exerted). To avoid
overfitting the 10-fold cross-validation procedure was used.

IV. EXPERIMENTS

The experiments were conducted on a set of 12 different
objects that included a mixture of everyday objects and 3D
printed objects. All everyday objects used in the experiments
were selected from the Yale-CMU-Berkeley (YCB) object
set [24], an object set designed for facilitating benchmarking
in robotic manipulation and grasping. These objects can be
seen in Fig. 5. The objects mostly differ in shape, but some
objects were deliberately chosen to have the same shapes but
slightly different sizes to evaluate how well the gripper can
discriminate similar objects.

Five grasping trials were performed for each object and
images were captured after each grasp. The torque applied
by the motors of the gripper was kept constant for every
grasp by monitoring the supplied current. The robotic gripper
was held at a fixed position and orientation by the Universal
Robots URS5 robotic arm. All the objects were placed at
the same position and orientation for all the trials. The
lighting conditions were also kept the same throughout the

experiments. These strict conditions were essential for the
simple classifier that we used. The system can be made
more robust to these environmental and positional changes
by training it on a more complex classification method like
Convolution Neural Networks.

One image was captured when the gripper was at rest and
images of the final grasping configurations were captured
for all trials (5 images for each of the 12 objects). Each of
the 60 images that were taken when the gripper was at the
final grasping configuration were compared with the image in
which the gripper was resting, using the previously described
algorithm. The algorithm derived the displacement values
of the 60 steel rods for each of these 60 images. In order
to evaluate how accurately this data can predict / identify
the 12 different everyday life objects, the Random Forest
(RF) classifier was employed. The prediction accuracy of
the classifier was calculated over the 10 rounds of the cross-
validation procedure (average accuracy).

The second experiment focused on estimating the amount
of force exerted by the pins. As discussed earlier in this
section, the images captured from the camera only pro-
vide information about the displacement of pins, therefore,
to estimate the forces an equation or a model describing
the relationship between the displacement and the contact
force exerted has to be determined. Three different methods
have been used for vision-based force estimation. First, a
mathematical relationship between the pin displacements
and the contact forces exerted on a SS25LA dynamometer
(connected with Biopac MP36 data acquisition unit) was ex-
tracted. The best-fitting curve was provided by the following
3rd order polynomial:

F =0.0008x> —0.0126x> +0.1175x +0.0853 (1)

where F is the exerted contact force and x is the displacement
of the pins. All the pins are identical and follow the same
equation. The other two approaches focused on learning
based force estimation. More precisely, the contact force
estimation problem was formulated as a regression problem
and two different regression techniques were employed for
comparison purposes, the Random Forests regression model
and an Artificial Neural Network (ANN). The ANN model
was constructed with a single hidden layer with four hidden
units and it was trained using the Levenberg-Marquardt
backpropagation algorithm. The estimation accuracy of the
regressors was calculated over the 10 rounds of the cross-
validation procedure. The efficiency of the trained model
was assessed using the percentage of the NMSE (Normalized
Mean Square Error).

V. RESULTS AND DISCUSSIONS

In this section, we present the results of the experiments
conducted, focusing on vision-based object identification and
contact force estimation.

A. Object Identification

The classifier identified the objects with 100% accuracy,
meaning that the objects grasped by the gripper can be iden-
tified with complete certainty by exploiting the displacement
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Fig. 6. Distribution of data after employing the Principle Component
Analysis (PCA) method. There is no overlapping between data of different
objects and the classes are well separated. This means that each class is
easily distinguishable and the objects can be identified with high accuracy.

data for each steel rod of the hyper-adaptive mechanism.
To verify that the different objects are easily distinguishable
due to the nature of the feature space used and not due to
overfitting, a dimensionality reduction technique (Principle
Component Analysis, PCA) was used to represent the 60-
dimensional feature space in a low-dimensional (2D) man-
ifold (retaining as much of the data variance as possible),
where data manipulation and visualization can be facilitated.
The outcome of the PCA algorithm can be seen in Fig. 6
where the first component (PC1) of PCA is depicted on the
x-axis and the second component (PC2) on the y-axis. The
colored dots in the plot represent the low dimensional data
and each color represents a different object (12 objects in
total). It can be seen that there are 5 dots for each color (the
number of experimental trials). As it can be noticed, there is
no overlapping between the data of different objects and the
examined classes are well separated. This means that even
after dimensionality reduction, where some information is
lost, the data is easily distinguishable and can be classified
with high accuracy.

B. Contact Force Estimation

A graph comparing the force exerted by the finger pins
and the force estimated by the different methods employed,
is shown in Fig. 7. The 3rd order polynomial estimated
the forces with an average accuracy of 94.7%, while the
Random Forest regression model and the Neural Network
model achieved force estimation accuracy of 98.7% and
99.1% respectively. Hence, such a force estimation method
can be easily and efficiently used during object grasping to
derive the contact forces exerted and maintain the stability
of grasps. According to [27], the quality of the grasp and the
resistance to external disturbances is directly related to the
number of contact points and the forces applied to the object.
Besides the maximization of the contact area and the fine
distribution of forces to the pins, estimating the amount of
contact force applied to the pins allows grasping of delicate
objects without damaging them.
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Fig. 7. Comparison between the real force exerted by the pins on a
dynamometer and the estimated forces. The 3rd order polynomial estimated
the force exerted with an average accuracy of 94.7%, while the Random
Forest regression model and the Neural Network model achieved force
estimation accuracies of 98.7% and 99.1% respectively.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we proposed a learning-based framework
that employs a hyper-adaptive robotic gripper and vision-
based reconfiguration estimation in order to: i) identify a
range of everyday objects during the execution of single,
open-loop, stable grasps and ii) to estimate the contact forces
exerted. This can be easily accomplished with a simple 2D
camera that extracts the shape of the grasped objects based
on the reconfiguration of the pins of the hyper-adaptive
robot gripper, while they are adapting to the surface of the
grasped object. The object identification has been formulated
as a classification problem employing a Random Forests
classifier that provides a classification accuracy of 100%.
The contact forces estimation is formulated as a standard
regression problem employing three different techniques,
Random Forests regression, Neural Networks, and a third-
order polynomial. The results of the examined regression
techniques range from 94.7% to 99.1%, demonstrating that
the proposed methodology can be efficiently used as an
alternative to force and tactile sensors that are typically
employed for measuring the contact forces.

Regarding future work, the design of the hyper-adaptive
robot gripper will be improved by including multiple hyper-
adaptive, articulated fingers, increasing the gripping surface
of the rubbery tips (also increasing the stability of the
grasps), and increasing the density and resolution of the
steel rod-based pins. In addition to that, micro-radar sensors,
such as the Google Soli, can be combined with the gripper
to discriminate between different everyday life objects not
only based on their geometries but also based on their
volume, material, and density to increase the robustness of
the classification procedure for a large inventory of objects.
The reliability of the system can be improved by enclosing
the camera within the hyper-adaptive finger structure so
that it can be isolated from the environment and have a
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lighting system connected to the camera. The size of the
enclosure depends on the distance of the camera from the
finger structure and it can be reduced by using a wide angle
lens or by having multiple cameras placed closed to the
hyper-adaptive finger, capturing different sections.
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