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Abstract— Mobile robotic gas distribution mapping (GDM) is
a useful tool for hazardous scene assessment where a quick and
accurate representation of gas concentration levels is required
throughout a staging area. However, research in robotic path
planning for GDM has primarily focused on mapping in open
spaces or estimating the source term in dispersion models.
Whilst this may be appropriate for environment monitoring
in general, the vast majority of GDM applications involve
obstacles, and path planning for autonomous robots must
account for this. This paper aims to tackle this challenge by
integrating a GDM function with an informative path planning
framework. Several GDM methods are explored for their
suitability in cluttered environments and the GMRF method
is chosen due to its ability to account for obstacle interactions
within the plume. Based on the outputs of the GMREF, several
reward functions are proposed for the informative path planner.
These functions are compared to a lawnmower sweep in a
high fidelity simulation, where the RMSE of the modelled gas
distribution is recorded over time. It is found that informing
the robot with uncertainty, normalised concentration and time
cost, significantly reduces the time required for a single robot to
achieve an accurate map in a large-scale, urban environment.
In the context of a hazardous gas release scenario, this time
reduction could save lives as well as further gas ingress.

I. INTRODUCTION

In response to Chemical, Biological, Radiological and
Nuclear (CBRN) incidents, the quick acquisition of accurate
information on the state of the environment can save lives.
In this situational awareness problem, key media such as
concentration maps and contextual information of contami-
nations would provide first responders with a greater under-
standing of the environment they are operating in. Gather-
ing this information by manual sampling using a handheld
device is risky and time consuming, therefore, a remote
and automatic solution is the obvious step in mitigating the
danger to human operators and reducing the time required to
collect the data. One promising solution to this problem is to
use autonomous vehicles such as Unmanned Aerial Vehicles
(UAVs) or Unmanned Ground Vehicles (UGVs). Onboard
these vehicles, there must be suitable algorithms that are
capable of using an entire suite of perceptual sensors in order
to enable the vehicle to operate autonomously. In this paper,
both the Gas Distribution Mapping (GDM) method and the
informative path planner are investigated as to achieve the
goal of efficient and autonomous GDM within a cluttered
environment.
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For GDM within cluttered environments, to the best of
the authors knowledge there is currently little research for
Informative Path Planning (IPP). In this paper we propose a
solution to this gap in the literature that convolves around a
reward function informed by the outputs a GDM algorithm
to deliver efficient and accurate GDM using an in-situ gas
sensing mobile robot.

A. Gas Distribution Mapping

GDM attempts to answer the question of How is the
gas distributed across an area? Whilst in certain scenarios
it may only be of interest to either determine if a gas
is present, or given the fact gas is present, where the
source of the release is, the distribution across the whole
environment can be useful for first responders as well as for
path planning [1]. A combination of small scale fluctuations
in the dispersal pattern and sparse measurements associated
with mobile sensing makes gas mapping an exceptionally
difficult task compared to radiation mapping which leverages
dense continual data. Because of the sparse and transient
nature of gas concentration readings, extra care must be taken
when choosing a mapping model. For example, simple linear
interpolation between readings is not suitable. There are
three popular methods currently used for GDM (mobile robot
specific applications) which are Kernel DM (and its variants)
[2]-[5], Gaussian Markov Random Field (GMRF) [6], [7]
and Gaussian Process (GP) [8], [9]. Of these methods, Kernel
has the advantage of being online and is computationally
lightweight but its simplistic nature shows a lack of accuracy
in cluttered environments due to its inability to account
for obstacle interactions. GP can be difficult to successfully
implement due to its need to be trained appropriately with
adequate data. Moreover, current formulations of GP do
not encode obstacle information into the model. Although
Jadidi et al. [10] showed that obstacle information can be
encoded into GP for Simultaneous Localisation and Mapping
(SLAM), it is an open question whether the same can be
applied to GDM. GMREF is the most recent attempt at GDM
and (whilst also being online and giving model uncertainties)
the major advantage compared to others is the ability to
model obstacle interactions with the plume and also model
how obstacles affect the uncertainty of the models prediction.
This modelling capability allows GMRF to be more suitable
for cluttered environments, which realistically make up the
vast majority of CBRN scenarios that require the use of a
mobile robot. Based on these insights, this paper advocates
GMREF as the GDM method for a Mobile Robot Olfaction
(MRO) application and therefore it is used as the basis in
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developing IPP for robotic GDM. It should be noted that
GMRF computationally scales poorly when applied to very
large maps, which needs to be further investigated.

B. Robotic Path Planning for Autonomous GDM

Path planning for GDM is of crucial importance when
considering the scenarios it is likely be applied to. Fast
deployment and acquisition of gas distribution characteristics
can mean the difference between safe containment and
potential loss of life. Whilst path planning within mobile
robotics has been extensively researched for a wide variety of
generic robotics tasks, very little research has been performed
for the specificity of the GDM domain.

Most research for GDM has employed some form of
sweep pattern wherein the robot navigates along a prede-
termined trajectory with the majority of efforts focusing on
path planning to resolve the single point source [2], [11],
[12], rather than optimising for full GDM. Environmental
monitoring tasks that do focus on the mapping process treat
path planning as a coverage maximisation problem, such as
those surveyed by Galceran et al. in [13]. Whilst this may
be suitable for environmental monitoring tasks such as aerial
surveying [14] and aquatic monitoring [15], GDM robots
often operate in obstacle rich environments that interact
with the distribution being modelled. This requires further
consideration as being explored in this paper.

II. GAUSSIAN MARKOV RANDOM FIELD

To spatially model the gas distribution across a map, the
GMRF method is employed. Markov random fields are a
nodal representation of an environment and therefore, a given
map is discretised into interconnected cells, with each cell
being represented by a node in the Markov network. In
Markov random fields, the construction of the nodal network
(see Fig. 1) in conjunction with measurement data can be
entirely defined in a Jacobian matrix J. An example can be
found in Eq (1).

mp Mmg -+ My e+ My s MN
1 1 =1 -+ 0 -+ 0 - 07
2 1 0 -+ =1 -+ 0 - 0
L 0 0 - 1 v =1 - 0

J= (1)
L+1 {0 1 =« 0 -+ 0 - 0
L+2 |1 0 =« 0 -+ 0 - 0
L+MmMLlo o -~ 1 - 0 - 0]

where m;, ;7 = 1,..., N, represents all map nodes in

the field, and all nodal connections (1 : L) are pairwise
defined with 1 and -1 (this is predefined and does not
change assuming the map formulation does not change).
Observations are also accounted for in the Jacobian, with

the location of each observation zp, & = 1,..., M, being
iteratively added to the Jacobian with a value of 1 at the
corresponding cell, m;, i =1,..., V.

The construction of the Markov random field has the
benefit of the nodal map being entirely flexible to the specific

scenario. Monroy et. al [6] propose a formulation for GDM
wherein map nodes are connected to other nodes that are
spatially orthogonal, i.e., a node in free space is connected
to four cells above, below, left and right. To account for
obstacles, if the connection between two nodes is blocked
by an obstacle, then the connection is deleted leaving the
node with three (or fewer) connections, as shown in Fig. 1.

Fig. 1. An example of a GDM GMRF formulation showing the concentra-
tion cells, m, the gas observations, z, the prior factors, F},, the observation
factors, F,, and a potential obstacle boundary. The diagram shows how
the obstacle boundary isolates the cell m 42, to the current cell being
sampled, my 4.

Once the construction of the network is completed, the
maximum likelihood estimation for the distribution can be
attained. However, for the sake of simplicity, only key
calculation steps are included in this paper. For detailed
derivation of the GDM specific formulation of the GMREF,
please refer to [6].

For GDM, the solution to the modelling problem is to
iteratively update prior concentration values of each node,
given new observations. Therefore, at each calculation of
the model, a change in the concentration value of each cell,
denoted by the matrix Am;, is calculated to update the
GMREF, such that

m4i = Mprior; + Amz )

where m; is the posterior mean concentration of the cell and
Mprior; 15 the prior mean concentration of a cell.

To solve the change in mean concentration across the field
given an observation, Eq (3) is solved for Am using the
Cholesky decomposition of the Hessian (formed from the
Jacobian) H = RTR.

HAm = —g

(JTAT)Am = —JTA(f(m) — y) ®

Am=R/(R"/ - g) 4

where H refers to the N x N Hessian, A refers to the (L +
M) x(L+M) information matrix consisting of diagonal prior
and observation factor values (i.e., I}, and F},), and g is the
gradient vector. The gradient vector accounts for the current
concentration value, m;, of cell 4, and calculates a gradient
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based on the values of surrounding cells (weighted by the
prior factor, F},) and observations at the node (weighted by
the observation factor, F,) shown in Eq (5).

9i =Y Fo(mi—z)+ Y Fp (mi—m;) (5
k j

J

where z is the value for all observations, k, associated
with the node <. The gradient on priors is summed over all
neighbour cells, j, of the node +.

Moreover, to calculate modelling uncertainty at a node, o;,
the covariance matrix is recovered by performing the inverse
of the Hessian and taking the diagonal values, Eq (6).

o? = H;ZI (6)

Since the Hessian diagonal values are proportional to the
number of connections and observations (depending on the
prior/observation information matrix) then cells that have few
connections exhibit a higher uncertainty. This has interesting
implications for uncertainty driven path planning since cells
that are in cluttered regions have a high uncertainty compared
to cells in more open space.

It should be noted that the original formulation by Monroy
et al. included a reductive term on the observations based
on the time that an observation is taken. Due to a quasi-
steady state simulation scenario, this additional factor is not
required but would be necessary for time varying mapping
applications.

III. IPP REWARD FUNCTIONS

For IPP, a reward function needs to be defined based on
some measure of information to find the best goal location
for the robot to travel to. The reward function used in a
path planner should consider all metrics that are available
to it whilst maximising the information gain [16]. The
output of the GMRF provides a predicted mean concentration
map and the associated uncertainty of all cells in the map
(the information to be maximised). Since the connection
relationship between nodes are defined in the Jacobian, a
distance metric, d, between a cell and all other cells can
easily be established using a simple search method such as
A* search along these connections (other obstacle avoidance
algorithms could surrogate but the focus of this paper is on
goal selection). As shown in the comprehensive gas sensor
technology survey by Liu et al. [17], gas sensors are subject
to a response time that varies depending on the type of
sensor deployed. This response time often dictates that the
robot has to remain stationary in order to get a representa-
tive concentration value and provide accurate mapping [9]
(however more advanced sensors such as photo-ionisation
detectors, can allow the robot to collect readings in transit).
Based on this inherent issue with gas sensing technology, the
sampling time must also be reflected in the cost function. The
sampling time cost, C, is shown in Eq (7), and refers to a
simple case UGV (more complex dynamic models could be
included at this stage). Since point sampling is assumed, full
trajectory information reward functions commonly used in
environmental monitoring applications [18], cannot be used

as the concentration data along a trajectory does not well
represent the actual concentration.

Ci = di/vr + tsample @)

where d; refers to the distance from the robots current
location to a cell, 7. This is then converted to a traversal
time using an assumed constant robot velocity, v,., in order
to incorporate the time needed to sample, tsqmpie-

The two GMRF outputs and the A* search, gives three
possible variables (mean, uncertainty and traversal cost) to be
considered when selecting candidate locations for sampling
local concentrations.

As explained previously, GMRF requires a relatively
coarse resolution to be computationally tractable. This vastly
reduces the number of candidates for traversal to being, at
a maximum, the number of nodes in the Markov field. It is
also likely this number is reduced as nodes that are within
obstacles do not need to be considered.

In [19], similar variables are applied to a global artificial
potential field and then maximised. The reward functions
proposed are constructed in a similar manner but in the
following, each of the variables are also tested in isolation
to examine their individual contribution to final proposed
function. Five proposed reward functions are tested, which
contain some permutations of the cost and information
criteria as follows:

o Maximising uncertainty reduction - The candidate with
the highest variance, o2, is chosen

7 = argmax (0’?) (8)
ieN

where N refers to the number of nodes within the

GMRF

o Time weighted uncertainty reduction - The candidate
with the highest variance weighted with the cost in
traversing to and sampling the location is selected

r; = argmax (O‘? / C’i) 9)
iEN

o Uncertainty weighted concentration - The candidate
with the highest normalised concentration, V;, weighted
by how certain the model is at said location. Normalised
concentration is defined as the ratio between a cells
concentration and the average map concentration (which
will usually converge to the background concentration).
This is employed so that scaling based on the type of
gas measured is not required.

N

Vizmi/<2jlmﬂ'>

~ (10)

r = argmax (Vi X a?) (11

iEN

where m; refers to the mean concentration value of a
cell as modelled by the GMRF
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o Time weighted concentration - The candidate with the
highest normalised concentration weighted with the cost
of traversal. It is also employed that no location shall
be visited twice, to avoid local minima.

r = argmax (Vi/Ci) (12)

i€EN

o Time weighted joint uncertainty and concentration -

The candidate with the highest normalised concentration

weighted by how certain the model is at said location,

and also taking into account the cost of traversal to the
candidate.

r = argmax <(V1 X 07;2)/01') (13)

i€EN

The above functions are tested against a manually selected
lawnmower sweep that runs for an equivalent length of time
(Figure 2). It should be noted that a myopic approach has
been implemented due to the computational limitations of
using GMREF in the following large scale scenario. For small
scale scenarios, an approach which uses the model to predict
several steps into the future should be used.

IV. SIMULATION EXPERIMENTS

To test the performance of the proposed reward functions,
a large scale, outdoor, cluttered scenario is used so that the
obstacle inclusion of GMRF can be fully exploited. Ground
truth concentration data is obtained from the DAPPLE dis-
persion experiment [20] and consists of a field test validated
Computational Fluid Dynamics (CFD) simulation of a source
release under steady wind conditions. As stated in [21],
one of the greatest challenges in odour sensitive robotics
is the availability of ground truth datasets, so this dataset
provides a good platform to base validated conclusions from.
A temporal snapshot of the CFD simulation is shown in
Figure 2, along with the predefined lawnmower sweep (not
accounting for obstacle avoidance).

The GMREF is set up with default parameters of F, = 10
and F}, = 0.5 and initialised with a cell resolution of 13m x
13m. This resolution is very large but the CFD simulation is
of a large scale chemical release which shows ingress over
the environment of several hundreds of metres, therefore, this
resolution gives a tractable solution and suitable resolution
to model the plume. This scale leads to an average GMRF
update time of 2.5s and a cell count of N = 5038, with a
matrix dimension of 68 x 74 cells. Since the source release
power is constant throughout the simulation (fluctuates tem-
porally but with long term plume stability as shown in Figure
4) and the fact that the simulation starts at full gas ingress,
the time decay functionality on observations is not required.
GMRF parameters are set based on a brief accuracy study
of various parameter values not shown here.

In the experiments, 10 starting locations are randomly
chosen that span areas both in and out of the plume, as well
as starting from inside and outside the cluttered regions. This
is to ensure that the robustness of the proposed algorithms
can be demonstrated.

Y [m]

Concentration

Fig. 2. Temporal snapshot of the CFD simulation concentration data along
with the predefined lawnmower sweep. Sweep trajectory shown is symbolic
of the lawnmower pattern, as the actual trajectory accounts for obstacle
avoidance so that the correct time cost is applied to the simulation. Each of
the 10 starting locations for IPP are shown with green circles.

Algorithm 1 IPP using GMRF

1: procedure INITTALISATION

2: Create GM RF () + occmap

3 Obs [ ]

4: Mprior < 0

5: time <1

6 set CFD(time)

7: pos + [—450, —380]

8: procedure MAIN

9 while time <= 10000s

10: Obs + [Obs, CF D(pos)]

11: [m, o] <= GMRF (pos, Obs, Mprior)
12: Mprior < M

13: C <« d/vel + tsample

14: r < RewardFunction(m,o,C)
15: pos 1

16: time < time + C(r)

17: set CF'D(time)

The simulation process for collecting the data (outlined
in Algorithm 1) is as follows. The GMRF Jacobian formu-
lation is created based on a predetermined occupancy map
(occmap), and an empty observation vector, Obs, initialised.
The CFD simulation is then started from ¢ = 1 and the
initial position of the robot, pos, is set. After sampling the
concentration of a location and inserting the reading into
the GMRF algorithm at the corresponding node, a ‘next
best view’ location, r, is assessed from the proposed reward
functions. The robot then sets this as its destination and the
CFD simulation is stepped forward in time, according to the
estimated time it should take the robot to reach its destination
and take a sample (which is set to 10s). The robot then takes
a sample at the proposed location by averaging noise added
CFD values that are within a 5Sm radius of the robot (to
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RMSE of the modelled plume over time
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Fig. 3.  The RMSE of the modelled plume against the ground truth for

the starting location [—450, —380], plotted over time for each strategy. The
time the source location is sampled is marked with a star for added context.

simulate the transient nature of sampling over the 10s sample
time). This new reading is then inserted into the GMRF and
the updated maps are used to inform the next stage of the
path planning process. This process is repeated until the end
of the CFD data available, at ¢ = 10000s. A video example
of a simulation run is available at youtu.be/GWiZQaayapQ.

V. RESULTS

In order to assess the performance of each function, the
Root Mean Square Error (RMSE) of the modelled plume
to that of the time averaged CFD data (ground truth) are
recorded at each time interval. This allows the evaluation
of not only the final level of accuracy of each strategy,
but also how quickly it took each algorithm to suitably
resolve the plume. RMSE is chosen as it puts a higher error
penalty on data that are far away from the ground truth (i.e.
poorly resolving the distribution close to the source where
a concentration spike is seen). From a practical point of
view, inaccurately modelling high concentration areas (false
negatives) could be highly dangerous to a first responder.

RMSE — \/ Yich ( mcL —m;)?

where m, is the ground truth mean concentration attained
from the CFD simulation.

The time to resolve, T, score (Table I) refers to how
many times faster, on average across all experiments, the
algorithm resolves the plume compared to the resolve time
of the sweep. An algorithm is deemed to adequately resolve
the plume when the RMSE drops below 0.0095 (this has been
determined as the appropriate limit of accuracy of the GMRF
to model the plume from extended testing). This metric is
key for evaluating how quickly each algorithm attains an
accurate map. A N/A score is shown if an algorithm did not
adequately resolve the plume within the simulation time.

The lawnmower sweep is the simplest method and covers
the entire map ensuring full coverage. Reviewing an example

(14)

Strategy Final RMSE Min RMSE Ty No.
x10—3 x1073, (s)  score samples
Sweep 9.5 9.2 1 110
o2 11.3 10.8 N/A 55
o2/C 9.5 9.3 0.56 195
V x o2 9.4 8.8 1.06 108
v/C 9.2 8.9 1.15 211
(V xa2)/C 8.7 8.5 2.05 209
TABLE I

SIMULATION RESULTS FOR THE LAWNMOWER SWEEP AND 5 PROPOSED
ALGORITHMS AVERAGED ACROSS ALL STARTING LOCATIONS.

run, Fig. 3, initial behaviour is similar to the proposed
methods but then plateaus at 1000s-2000s. This is caused
by the robot sweeping into an area that is not in the plume,
despite the fact that parts of the plume have already started
to be resolved on the first pass. This is the main drawback of
an uninformed sweep. The sweep then revisits the plume on
a second pass and eventually samples the source locations at
t = 3024s. To ensure full coverage, the sweep has to traverse
a greater distance between samples leading to a relatively low
average number of samples taken over the simulation (110).
The average minimum RMSE of the map is comparable to
the other methods but significantly worse due to the lack of
sampling resolution within the plume.

Navigating based greedily on maximum uncertainty is
the worst strategy. Large traversal times are ignored and
therefore the average number of samples of this strategy is
the lowest (55). Since the mean concentration map is not
accounted for, the plume is poorly resolved. This proves the
need for extra considerations when performing uncertainty
driven path planning for GDM.

Adding the traversal cost to the maximum uncertainty
criterion allows a 4 times increase in the number of samples.
This significantly increases RMSE reduction as the algorithm
progressively investigates the cluttered region. However, ef-
forts are still spent resolving areas that are modelled to be of
very low concentration, which leads to long periods of time
where the plume is not being resolved.

Trying to maximise all information (mean and uncertainty)
without accounting for cost proves to be a useful (if naive)
solution. The robot successfully locates the plume, however
less efficiently due to the lack of constraint on traversal time.
When the plume is located, ¢ = 2507s, the algorithm resolves
the plume efficiently since the V' term, keeps the robot softly
constrained to the plume.

To prove the need for uncertainty driven path planning,
planning based solely on concentration and traversal cost is
tested. Due to to the initial no concentration state, the algo-
rithm defaults to an automated sweep due to not being able to
sample the same location twice. This initially proves worse
than the manually selected sweep. Once the robot detects
the edge of the plume, the RMSE significantly drops but
the lack of exploratory term dictates that the robot tediously
resolves its current interpretation of the plume location (also
shown with the highest total number of samples at 211).
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CFD Mean

t = 4000s

(v x a2)/C

Fig. 4. Mean concentration maps for the best performing strategy (the proposed algorithm) against the standard sweep at 1000s, 2000s, 4000s and 8000s.
The mean concentration data from the CFD simulation (the ground truth) is shown for comparison.

This is shown with no RMSE drop from ¢t = 2000s -
8500s, after which the source location is sampled and the
RMSE begins to drop again. At this point, the plume is
well resolved due to its attraction to the high concentration
area, but hits the ground truth data limit of the simulation
at 10000s. With starting locations that are initially near the
source, this method resolves very quickly (hence a reasonable
time score), but Fig. 3 shows how this method is not robust
far away from the plume.

The final and most informed algorithm considers all the
factors outlined. It shows the quickest initial reduction in
RMSE and in 9 out of 10 starting locations is the quickest to
resolve, averaging twice as fast as the sweep. Once the plume
is located, the V' term attracts the robot to keep resolving
the plume whilst still navigating to areas that reduce the
uncertainty of the model. Across all metrics, this proposed
algorithm performed the best.

Figure 4 shows the mean maps for best strategy (V xo /C),
the lawnmower sweep and the CFD ground truth at 4 time
steps across the simulation. The CFD maps show the large
scale stability of the plume, but also how the simulation is
locally time variant in regions and hence why the RMSE
values in Fig. 3 change despite the algorithms converging.
They also provide visual stimuli as to how well the model
would be able to inform a first responder as to potential
evacuation zones (a metric impossible to attain from the raw
RMSE output).

VI. CONCLUSION

The proposed algorithm leverages the unique uncertainty
output from the GMRF formulation to quickly and efficiently

resolve a gas release in a cluttered large scale urban envi-
ronment. The incorporation of normalised concentration and
traversal cost leads to an accurate distribution map acqui-
sition approximately twice as fast as a manual sweep and
quicker than all other proposed reward functions that only
use a subset of the variables utilised in the final algorithm.
It is found that the uncertainty term dictates the robot to be
more exploratory, biasing toward unsampled locations, whilst
the normalised concentration term keeps the robot within the
region of interest. Accounting for traversal and sampling cost
maximises the number of samples that the robot takes within
a given time frame.

The autonomous nature of the algorithm means there is
no need for the robot to be first situated in zone with
concentration data available and only requires an obstacle
map of the surroundings. Another benefit compared to a
manual sweep is that a sweep requires some form of luck to
suitably sample an unknown area, which is not the case for
the final algorithm which intelligently searches to find the
plume.

Further work on IPP in GDM is however, still required. An
experimental validation of the results seen in the simulation
and testing on a different scenario (such as an indoor stage)
will further validate the work shown here.
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