
ARPDR: An Accurate and Robust Pedestrian Dead Reckoning System for
Indoor Localization on Handheld Smartphones

Xiaoqiang Teng1, Pengfei Xu1, Deke Guo2, Yulan Guo3, Runbo Hu1, and Hua Chai1

Abstract— The proliferation of mobile computing has
prompted Pedestrian Dead Reckoning (PDR) to be one of the
most attractive and promising indoor localization techniques for
ubiquitous applications. The existing PDR approaches either
suffer position drifts caused by accumulative errors or are
sensitive to various users. This paper presents ARPDR, an
accurate and robust PDR approach to improve the accuracy
and robustness of indoor localization methods. Particularly,
we propose a novel step counting algorithm based on motion
models by deeply exploiting inertial sensor data. We then
combine step counting with adaptive thresholding to personalize
the PDR system for different users. Furthermore, we propose
a novel stride-heading model with a deep neural network
to predict stride lengths and walking orientations, thus the
displacement errors are significantly reduced. Extensive experi-
ments on public datasets demonstrate that ARPDR outperforms
the state-of-the-art PDR methods.

I. INTRODUCTION
The past decade has witnessed the conceptualization and

development of various indoor localization techniques on
handheld smartphones based on Inertial Measurement Unit
(IMU) [1]–[3], vision [4]–[7], Wi-Fi signals [8], [9], and
magnetic [10]. Among them, IMU-based dead reckoning has
been extensively utilized due to its characteristics: low cost,
high energy-efficiency, working anywhere, and embedded in
every smartphone. As a result, IMU-based dead reckoning
has been suggested as one of solutions for ubiquitous indoor
localization with a variety of applications, including indoor
navigation and augmented reality.

IMU-based approaches achieve positions through the inte-
gration of accelerometer and gyroscope readings. The smart-
phone rotation is obtained from gyroscope readings. The
linear acceleration is calculated by subtracting the gravity
from accelerometer readings. The rotations and linear accel-
erations are used to calculate velocities, which are further
integrated to produce positions. However, it is challenging
for the current integration approaches to work on ordinary
smartphones due to their high error levels of sensors. The
errors of IMU sensors, including noise and bias from the
accelerometer and gyroscope, are difficult to be accurately
calibrated online or offline. Therefore, they suffer position
drifts since errors accumulate rapidly in the integration
process [11], [12].

Corresponding author: Deke Guo
1Didi Chuxing {tengxiaoqiang, xupengfeipf,

hurunbo, chaihua}@didiglobal.com
2College of System Engineering, National University of Defense Tech-

nology, Changsha, Hunan, P. R. China dekeguo@nudt.edu.cn
3College of Electronic Science and Technology, National Uni-

versity of Defense Technology, Changsha, Hunan, P. R. China
yulan.guo@nudt.edu.cn

Fig. 1. Main architecture of ARPDR framework.

To alleviate these issues, Pedestrian Dead Reckoning
(PDR) and data-driven approaches have been investigated to
achieve good performance for position estimation. Recently,
many PDR approaches have been developed to estimate
positions on handheld smartphones [1], [13], [14]. These
approaches are deployed with three stages: step counting
[15]–[18], stride estimation [19], [20], and heading estima-
tion [21]–[23]. Despite these extensive efforts, few solutions
have been deployed in practical applications due to their high
position drifts from cumulative errors, especially for errors
of walking orientation [3], [24]. Data-driven approaches es-
timate positions with nonlinear mapping velocity or position
vectors from IMU data using deep neural networks [2],
[3], [24]. They provide a new opportunity to improve the
performance of inertial navigation.

This paper presents ARPDR, an accurate and robust PDR
system for indoor localization using IMU data by com-
bining data-driven and conventional PDR approaches. It is
developed on ordinary smartphones to estimate the positions
of a user. We first propose a novel step counting algo-
rithm to significantly reduce detection errors of step events
and improve the performance of existing PDR approaches.
Specifically, we present a peak detection module based on
adaptive thresholding which enhances the robustness of the
step counting to different users and device positions. We
also propose a long-short window-based walking intensity
module which improves the accuracy of the step counting.
We then propose a novel stride-heading model to predict
stride lengths and walking orientations from IMU sensor
history simultaneously.

An ARPDR prototype system was implemented on iOS
and Android platforms. Extensive experiments conducted on
handheld smartphones show that our approach outperforms
existing competitors. ARPDR significantly pushes forward
the state-of-the-art PDR approaches.

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 10888

II. RELATED WORK

Our work focuses on sensor-integrated indoor localization.
Rotation estimation with IMU-only has been deployed for
virtual reality applications, e.g., Google Cardboard VR1 and
Oculus VR2. However, the position estimation remains a
challenging issue due to errors (e.g., bias and noise) produced
by IMU sensors. To reduce position drifts, PDR and data-
driven approaches have been extensively investigated by
researchers.

Pedestrian Dead Reckoning. The basic idea of the PDR
approach is to add the estimated displacement vector to the
previously estimated position. To implement a PDR sys-
tem, three typical steps are employed: step counting, stride
estimation, and orientation estimation [1], [13], [14], [25].
The rationality behind step counting is that the accelerations
exhibit periodical and repetitive patterns during a user’s
walking. Various algorithms were proposed to detect step
events using accelerometer or gyroscope readings, such as
peak detection [15]–[17] and zero-crossing detection [18].
Furthermore, physical distances are calculated by multiplying
step counts with stride lengths [13], [19], [20]. To obtain
the distance vector, heading estimation is performed using
gyroscope and accelerometer readings, which provide the
relative direction changes to the phone platform [21]–[23].
Existing PDR approaches suffer position drifts accused by
cumulative errors from all of these steps. Therefore, in this
paper, cumulative errors are reduced by exploiting novel
motion models.

Data-driven dead reckoning. Recently, data-driven ap-
proaches have been exploited based on machine learning or
deep learning techniques [2], [3], [24]. RIDI was proposed
to estimate the positions of a user by regressing the velocity
vector in a device coordinate frame [2]. IONet [3] and
RoNIN [24] were presented based on deep neural networks
to estimate positions by regressing the velocity magnitude.
In this paper, ARPDR improves the robustness of position
estimation by incorporating PDR and data-driven approaches
even for unseen users on datasets.

III. THE PROPOSED APPROACH

ARPDR consists of two modules: step counting and dis-
placement estimation. The step counting is to detect a user’s
step events. The displacement estimation module is to cal-
culate the traveled distances from stride lengths and walking
orientations within a step. All modules exploit accelerometer
and gyroscope readings embedded in a smartphone. Figure
1 shows the main architecture of ARPDR.

A. Step counting algorithm

The proposed algorithm is based on peak detection [15]
due to its good performance under different usage posi-
tions of a smartphone, e.g., holding in hand or bag. Each
walking step of a user corresponds to a peak value of
the accelerometer readings. Therefore, traveled steps are

1https://arvr.google.com/cardboard/
2https://www.oculus.com/

calculated by detecting and counting peak values. However,
the peak detection algorithm suffers considerable false pos-
itive and false negative errors which will be significantly
accumulated [15], [16]. In this paper, the performance of the
peak detection algorithm is further improved by applying
two modules, including the peak detection module based
on adaptive thresholding and the long-short window-based
walking intensity module.

Peak detection based on adaptive thresholding. A peak
value is a local maxima, which is extracted from amplitudes
of the acceleration. A candidate step event is then detected
by checking whether the peak value exceeds a predefined
threshold [15], [16]:

Speak
t =

{
1, if at ≥ T Hpeak,
0, otherwise,

(1)

where, at is the amplitude of acceleration, i.e., at =√
a2

t,x +a2
t,y +a2

t,z. at,x, at,y, and at,z are the acceleration
components along the x, y, and z axes in the IMU’s body
frame at time t, respectively. T Hpeak is the threshold of peak
detection. Existing algorithms fix the threshold, thus it offers
detection errors for a variety of users. In ARPDR, T Hpeak is
a dynamically adjusted threshold. Given an initial value (set
to 1.2 m/s2), the peak threshold is calculated as:

T Hpeak = max{1.2, at−2 + · · ·+at + · · ·+at+2

4
}, (2)

where, at is the amplitude of acceleration at the time t.
Long-short window-based walking intensity. Walking

intensity is used to measure the variance of the acceleration
within one step. It is essential for detecting a step event
because the intensity presents a probability distribution of
step events due to a periodical and repetitive pattern of
accelerations. If the walking intensity exceeds a predefined
threshold, the acceleration on this moment is considered as
a candidate step event:

Swalking
t =

{
1, if ∑

nw
t=0 Wt ≥ T Hwalking and ashort

avg > along
avg ,

0, otherwise,
(3)

where Wt = (ashort
avg − along

avg)2∆t, ∆t is the sampling interval
of the acceleration, nw is the sampling number of the
acceleration starting with the last step, and T Hwalking is a
threshold (empirically set to 0.3 in our work). ashort

avg and along
avg

are the average amplitude of the acceleration on short and
long time window. The size of short and long time windows
are empirically set to 0.2 second and 1.0 second, respectively.

As shown in Fig. 2, a red star represents a step point and
a blue dot represents the value of the walking intensity. It
demonstrates that the proposed method detects the step event
successfully. Once a step event has been detected, values of
the walking intensity will be reset to 0.

In summary, the resulting step event Sstep
t is detected from

the intersection of the above conditions:

Sstep
t = Speak

t ∩Swalking
t . (4)

10889

0 200 400 600 800 1000

Sampling index

0.0

0.2

0.4

0.6

0.8

1.0

1.2

In
te

n
s
it

y

Walking intensity

Step point

Fig. 2. An illustration of the walking intensity. A red star represents a step
point and a blue dot represents the value of the walking intensity on each
frame. Once a step event has been detected, values of the walking intensity
will be reset to 0.

B. Displacement estimation

The step events are typically converted into displacements
by multiplying user’s stride lengths and walking orientations.
Orientation estimation is more challenging since walking
orientations are different from device orientations. Device
orientations are derived by the Complementary Filter (CF)-
based [22], [23] or the EKF-based [26] algorithms using
accelerometer and gyroscope readings. It depends on the
held position of a smartphone, such as landscape or portrait.
For example, the deviation between the walking orientation
and the device orientation maybe 90◦ when a user walks
by holding a smartphone on one side. For stride estimation,
existing methods have been proposed based on the walking
frequency and acceleration variance in a time window [13],
[19]. They produce stride estimation for a variety of users
with a mean error of 6.0cm. Those orientation deviations and
stride length errors cause position drifts for PDR approaches.

To reduce these errors, a stride-heading model is proposed
based on Temporal Convolutional Network (TCN) [27] ar-
chitecture in ARPDR. It predicts stride lengths and walking
orientations using accelerometer and gyroscope readings
with two key design principles: (i) Ground-truth annotation,
(ii) Velocity and angle observations. We now explain these
principles.

Ground-truth annotation. The ground-truth values of
stride lengths and walking orientations are calculated with
walking traces derived from a 3D tracking sensor, e.g., a
smartphone with Apple ARKit3 or Google ARCore4. Given
a time window size s (e.g., 50 for 100Hz of sampling
frequency), the walking orientation θt at the t-th frame is
calculated as:

θt = arctan
pt+s,x− pt,x

pt+s,y− pt,y
, (5)

where pt,x and pt,y are coordinates along the x and y axes,
respectively. An illustration of the walking orientation is
shown in Fig. 3.

3https://developer.apple.com/augmented-reality/
4https://developers.google.com/ar/

Fig. 3. An illustration of the walking orientation. A circle represents a
step point.

The stride length Lt at the t-th frame is calculated as:

Lt =
√
(pt+s,x− pt,x)2 +(pt+s,y− pt,y)2, (6)

Stride-heading model. We use TCN [28] as a backbone to
predict a 7D vector (vx,vy,sinθ ,cosθ ,sinφ ,cosφ , lx,y) with
IMU data from a 3-axis accelerometer, a 3-axis gyroscope,
and a 3-axis linear accelerometer. We assume that users walk
on a horizontal plane, i.e., the x−y plane. A 7D vector con-
sists of a 2D velocity vector (vx,vy), a 1D stride length vector
lx,y, a 2D vector of the walking orientation (sinθ ,cosθ), and
a 2D vector of the orientation deviation (sinφ ,cosφ). θ and
φ are the angles of the walking orientation and the orientation
deviation, respectively. The orientation deviation is an angle
between the device orientation and the walking orientation.
Therefore, at frame i, the network takes IMU data from frame
i−W to i as a W ∗9 tensor and produces 7D vector at frame
i, where W is the time window depending on the sampling
frequency of IMU sensors. At the beginning part of TCN, a
bilinear layer, a ReLU activation function, and a dropout are
added to extract features from IMU data. At the end part of
the TCN, a fully connected layer is attached. Details of the
proposed stride-heading model are shown in Fig. 4.

For each input sample xxx, the predicted output of the
network is ooo = (vx,vy,sinθ ,cosθ ,sinφ ,cosφ , lx,y). Loss Lo
is calculated as follows:

Lo =
1

2σ2
1

Lp +
1

2σ2
2

Lv +
1

2σ2
3

Lh +
1

2σ2
4

Ls + logσ1σ2σ3σ4,

(7)
where Lp, Lv, Lh, and Ls are losses of the walking path, the
velocity, the orientation, and the stride length, respectively.
σ1, σ2, σ3, and σ4 are weights of the loss. These weights
are learnable parameters [29].

Losses Lp, Lv, Lh, and Ls are calculated by Mean Square
Error (MSE) as follows:

Lp =
1

2N

N

∑
i=1

(pi− p̄i)
2, (8)

Lv =
1

2N

N

∑
i=1

(vi− v̄i)
2, (9)

Lh =
1

2N

N

∑
i=1

[(hi− h̄i)
2 +(di− d̂i)

2], (10)

10890

Fig. 4. The network architecture for the stride-heading model.

Ls =
1

2N

N

∑
i=1

(li− l̄i)2, (11)

where p̄i and pi are the estimated and ground-truth positions
in a path by integrating velocities, respectively. v̄i, h̄i, d̄i, and
l̄i are the estimated velocity, walking orientation, orientation
deviation, and stride length, respectively. vi, hi, di, and li
are the ground-truth velocity, walking orientation, orientation
deviation, and stride length, respectively.

Velocity and angle observations. A confidence Scon f
i

at the i-th frame is calculated by the predicted velocity
magnitude, walking orientation θi, and orientation deviation
φi as follows:

Scon f
i =

1
||vi||

((sinθi− sin(αi−φi))
2

+(cosθi− cos(αi−φi))
2),

(12)

where αi is the device orientation at the i-th frame calculated
by the CF-based algorithm [22], [23]. ||vi|| is the velocity
magnitude. If Scon f

i is less than a predefined threshold,
the predicted walking orientation is considered as the final
walking orientation θi. Otherwise, the device orientation αi
is considered as the final walking orientation.

C. Put it all together

We incorporate the results from the step counting and
the displacement estimation to continuously estimate the
positions of a user. Thus, the current position Pi at the i-
th step is calculated by adding the displacement vector to
the previous position Pi−1:

Pi =

[
xi
yi

]
=

[
xi−1
yi−1

]
+Li

[
sinθi
cosθi

]
, (13)

where xi and yi represent coordinates at the i-th step along
the x and y axes in the global coordinate system. Li and θi
are the stride length and the walking orientation at the i-th
step.

IV. EXPERIMENTAL EVALUATION

In this section, we first evaluated the performance of step
counting, stride estimation, and orientation estimation, and
then tested the performance of the position estimation.

A. Experimental setting

We evaluated the performance of proposed algorithms on
three datasets, including two public datasets and a new stride
length dataset, as described follows.

Oxford Step Counter dataset. The Oxford Step Counter
dataset was collected from three researchers walking with
three different phones (Google Pixel, Samsung Galaxy S6,
LG Nexus 5) held in different positions: in a hand, a pocket,
an armband, a shoulder purse, and a neck pouch on a lanyard
[15], [17]. It contains about 60 trajectories.

RoNIN. RoNIN published 140 trajectories acquired by
100 users [24]. The ground-truth positions were obtained
using a 3D tracking device. The IMU data was collected us-
ing three smartphones (Asus Zenfone AR, Samsung Galaxy
S9, and Google Pixel 2 XL) in 3 buildings with motion free.
Note that, they only published 50% of the dataset5.

Stride Length dataset. Due to the lack of a public
stride length dataset, we built a new stride length dataset,
which contains 100 trajectories from 11 users with iPhone
8P, iPhone 7P, Samsung Galaxy S7, and Huawei Mate9
smartphones held in hand. The ground-truth stride lengths
are recorded by a 3D tracking device [2], [24].

ARPDR system was implemented in C++ for iOS and
Android platforms and tested on different smartphones. The
hyper-parameters of step counting, stride estimation, and
orientation estimation algorithms were trained on the training
dataset. Our stride-heading model was implemented with
PyTorch6. The TCN network has six residual blocks with
32, 64, 128, 256, 72, and 36 channels and a convolutional
kernel of size 3. The TCN is followed by a fully connected
layer that output the scalars of velocity, walking orientation,
and orientation deviation. For training, a batch size of 256, an
initial learning rate of 0.0003, ADAM optimizer, and dropout
strategy with probability 0.2 were used.

B. Performance evaluation for key components

Performance of step counting. We conducted quantitative
evaluations of the proposed step counting algorithm on the
Oxford Step Counter dataset with the competing method
[16]. The SAcc metric is used to measure the performance
of the proposed step counting algorithm:

SAcc = (1− min{ST , |SE −ST |}
ST

)×100%, (14)

where SE and ST are the estimated and ground-truth number
of walking steps, respectively.

It can be seen from Table I, our ARPDR outperforms
the baseline [16], achieving about 2.3% accuracy improve-
ments. It demonstrates that peak detection based on adaptive
thresholding and long-short window-based walking intensity
modules significantly improve the accuracy of the step count-
ing. As shown in Fig. 5, red stars represent step points and
blue dots represent thresholds. We can see that thresholds
are dynamically adjusted with the user’s walking.

5https://ronin.cs.sfu.ca/README.txt
6https://pytorch.org/

10891

0 200 400 600 800 1000

Sampling index

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

T
h
re

s
h
o
ld

Threshold

Step point

Fig. 5. An illustration of the adaptive thresholding strategy. Red stars
represent step points and blue dots represent thresholds detected from the
step counting algorithm.

Performance of stride estimation. The performance of
the stride estimation from the stride-heading model was
tested on the Stride Length dataset with three published
methods, including Weinberg [19], Zhang et al. [13], and
ANN [20]. Table II summarizes errors of the stride length
for ARPDR and the other methods. It can be seen that
ARPDR presents lower errors than other methods with big
margins. ARPDR achieves average stride length errors of
2.2cm. Other methods achieve average stride length errors
of 10.0cm, 8.1cm, and 6.1cm, respectively. These results
confirm that the TCN network is highly learning capable
of stride lengths.

Performance of orientation estimation. Furthermore, we
conducted quantitative evaluations of the proposed stride-
heading model on the RoNIN dataset with two published
methods: Madgwick et al. [22] and RoNIN [24]. Madgwick
et al. [22] estimated device orientations using the Com-
plementary Filter algorithm. RoNIN [24] took the LSTM
architecture to predict a 2D vector (x,y), which are sin
and cos values of the body heading angle at each frame.
To test the performance of walking orientations on aside
and backward traces, we transformed the IMU data with a
random angle (e.g., 90◦ or 150◦) on some datasets [14].

ARPDR achieves average orientation error of 18.21◦,
while Madgwick et al. [22] and RoNIN obtain average

TABLE I
ACCURACY OF THE STEP COUNTING ALGORITHM

Dataset Thanh et al. [16] ARPDR
User 1, hand 99.08% 100%

User 1, front pocket 99.39% 99.69%
User 1, back pocket 95.34% 99.71%
User 1, neck pouch 97.98% 99.71%

User 1, bag 96.24% 99.71%
User 1, armband 100% 100%

User 2, hand 97.65% 99.41%
User 2, front pocket 95.92% 98.83%
User 2, back pocket 99.41% 98.81%
User 2, neck pouch 96.67% 99.72%

User 2, bag 89.2% 98.89%
User 2, armband 97.67% 98.54%

Average Accuracy 97.04% 99.42%

orientation errors of 65◦ and 19.88◦, respectively. ARPDR
achieves the best performance. That is because that the
walking orientation during users’ walking is smooth and the
confidence can filter outliers of predicted orientations from
the stride-heading model.

C. Position evaluation

The Absolute Trajectory Error (ATE) is used to evaluate
the performance of the position estimation. ATE is defined as
the Root Mean Squared Error (RMSE) between the estimated
and ground-truth trajectories as a whole. We compared our
method with three methods:

(i) PDR consists of the step counting [16], the stride
estimation [19], and the device orientation [22] algorithms.

(ii) SH-PDR consists of the proposed step counting in
ARPDR, the stride estimation [19], and the body heading
[24] algorithms.

(iii) RoNIN: We use the official implementation [24].
Since the work only published 50% of the dataset, we split
the dataset into train, validation, and test datasets by 6 : 1 : 3.
We trained a model in the training dataset.

Table III lists results of the position estimation. The
RoNIN dataset provides two testing sets, one for subjects
that are also included in the training set and the other for
unseen subjects. It can be seen that ARPDR outperforms
competing approaches with significant margins, achieving
about 20% accuracy improvements over the state-of-the-art
on the RoNIN dataset. We can notice that our ARPDR gener-
alizes well from experimental results on unseen testing set, in
particular, ATE and RTE below 5.0 and 3.6, respectively. Our
future work is to push the limit of generalization capability
by designing a better regression network.

Figure 6 shows the trajectory achieved by our ARPDR is
well aligned over one obtained by ARKit with an iPhone 8P
in real scenes. It demonstrates that ARPDR achieves a good
performance of position estimation.

TABLE II
STRIDE LENGTH ERRORS

Algorithm Average Error
Weinberg [19] 10.0cm

ANN [20] 8.1cm
Zhang et al. [13] 6.1cm

ARPDR 2.2cm

TABLE III
POSITION EVALUATION. EACH ENTRY SHOWS THE MEAN POSITIONAL

ERROR

Test Subjects Metric PDR SH-PDR RoNIN [24] ARPDR

Seen ATE 28.10 10.07 5.78 4.10
RTE 20.60 9.92 3.68 3.52

Unseen ATE 26.17 13.99 6.73 5.00
RTE 20.70 12.08 4.33 3.60

10892

(a) Length: 358m, ATE: 1.2

(b) Length: 397m, ATE: 2.6

Fig. 6. Evaluation in the real scene. The black line marks the trajectory
given by the ARKit system using an iPhone 8P smartphone and the blue
line marks the trajectory given by our system.

V. CONCLUSIONS
In this work, we propose ARPDR, an accurate and robust

PDR system for inertial navigation to estimate positions
of smartphones by exploiting mobile computing and deep
learning techniques. We have derived robust step counting
and displacement estimation algorithms by deeply exploiting
human motion patterns. ARPDR is fed with IMU data
only and requires no other sensor. The proposed method
has shown significant performance improvement in public
datasets and real scenes.

ACKNOWLEDGMENT
This work is partially supported by the National Key

Research and Development Program of China under Grant
No. 2018YFE0207600 and the National Natural Science
Foundation of China (No. 61972435).

REFERENCES

[1] H. Wang, S. Sen, A. Elgohary, M. Farid, M. Youssef, and R. R.
Choudhury, “No need to war-drive: Unsupervised indoor localization,”
in Proc. of ACM MobiSys, 2012.

[2] H. Yan, Q. Shan, and Y. Furukawa, “RIDI: robust IMU double
integration,” in Proc. of Springer ECCV, 2018.

[3] C. Chen, X. Lu, A. Markham, and N. Trigoni, “IONet: Learning to
cure the curse of drift in inertial odometry,” in Proc. of AAAI, 2018.

[4] J. Dong, Y. Xiao, M. Noreikis, Z. Ou, and A. Ylä-Jääski, “iMoon:
Using smartphones for image-based indoor navigation,” in Proc. of
ACM SenSys, 2015.

[5] T. Qin, P. Li, and S. Shen, “VINS-Mono: A robust and versa-
tile monocular visual-inertial state estimator,” IEEE Transactions on
Robotics, vol. 34, no. 4, pp. 1004–1020, 2018.

[6] X. Teng, D. Guo, Y. Guo, X. Zhou, and Z. Liu, “CloudNavi: Toward
ubiquitous indoor navigation service with 3d point clouds,” ACM
Transactions on Sensor Networks, vol. 15, no. 1, pp. 1:1–1:28, 2019.

[7] X. Teng, D. Guo, Y. Guo, X. Zhao, and Z. Liu, “SISE: self-updating
of indoor semantic floorplans for general entities,” IEEE Transactions
on Mobile Computing, vol. 17, no. 11, pp. 2646–2659, 2018.

[8] M. Kotaru, K. R. Joshi, D. Bharadia, and S. Katti, “SpotFi: Decimeter
level localization using WiFi,” in Proc. of ACM SIGCOMM, 2015.

[9] S. Kumar, S. Gil, D. Katabi, and D. Rus, “Accurate indoor localization
with zero start-up cost,” in Proc. of ACM MobiCom, 2014.

[10] Y. Shu, K. G. Shin, T. He, and J. Chen, “Last-Mile navigation using
smartphones,” in Proc. of ACM MobiCom, 2015.

[11] N. El-Sheimy, H. Hou, and X. Niu, “Analysis and modeling of inertial
sensors using allan variance,” IEEE Transactions on Instrumentation
and Measurement, vol. 57, no. 1, pp. 140–149, 2008.

[12] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-Manifold
preintegration for real-time visual-inertial odometry,” IEEE Transac-
tions on Robotics, vol. 33, no. 1, pp. 1–21, 2017.

[13] H. Zhang, W. Yuan, Q. Shen, T. Li, and H. Chang, “A handheld inertial
pedestrian navigation system with accurate step modes and device
poses recognition,” IEEE Sensors Journal, vol. 15, no. 3, pp. 1421–
1429, 2015.

[14] W. Kang and Y. Han, “SmartPDR: Smartphone-based pedestrian dead
reckoning for indoor localization,” IEEE Sensors Journal, vol. 15,
no. 5, pp. 2906–2916, 2015.

[15] B. Brajdic and R. Harle, “Walk detection and step counting on
unconstrained smartphones,” in Proc. of UbiComp, 2013.

[16] P. Van Thanh, N. Duc Anh, D. Nhu Dinh, P. Hong Hai, T. Van An,
S. umbesan, and T. Duc-Tan, “Highly accurate step counting at various
walking states using low-cost inertial measurement unit support indoor
positioning system,” Sensors, vol. 18, no. 10, p. 3186, 2018.

[17] D. Salvi, C. Velardo, J. Brynes, and L. Tarassenko, “An optimised
algorithm for accurate steps counting from smart-phone accelerome-
try,” in Proc. of the 40th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, 2018.

[18] R. de Silva, J. Perera, C. P. Abeysingha, and N. Abhayasinghe, “A
gyroscopic data based pedometer algorithm with adaptive orientation,”
in Proc. of the 14th IEEE International Conference on Control and
Automation, 2018.

[19] H. Weinberg, “Using the ADXL202 in pedometer and personal navi-
gation applications,” 2002.

[20] H. Xing, J. Li, B. Hou, Y. Zhang, and M. Guo, “Pedestrian stride length
estimation from IMU measurements and ANN based algorithm,”
Journal of Sensors, vol. 2017, pp. 6 091 261:1–6 091 261:10, 2017.

[21] P. Zhou, M. Li, and G. Shen, “Use it free: Instantly knowing your
phone attitude,” in Proc. of ACM MobiCom, 2014.

[22] S. O. H. Madgwick, A. J. L. Harrison, and R. Vaidyanathan, “Estima-
tion of imu and marg orientation using a gradient descent algorithm,”
in Proc. of IEEE International Conference on Rehabilitation Robotics,
2011.

[23] M. Euston, P. W. Coote, R. E. Mahony, J. Kim, and T. Hamel, “A
complementary filter for attitude estimation of a fixed-wing UAV,” in
Proc. of IEEE/RSJ IROS, 2008.

[24] H. Yan, S. Herath, and Y. Furukawa, “RoNIN: Robust neural inertial
navigation in the wild: Benchmark, evaluations, and new methods,”
CoRR, vol. abs/1905.12853, 2019.

[25] X. Teng, D. Guo, Y. Guo, X. Zhou, Z. Ding, and Z. Liu, “IONavi:
An indoor-outdoor navigation service via mobile crowdsensing,” ACM
Transactions on Sensor Networks, vol. 13, no. 2, pp. 12:1–12:28, 2017.

[26] J. L. Marins, X. Yun, E. R. Bachmann, R. B. McGhee, and M. Zyda,
“An extended kalman filter for quaternion-based orientation estimation
using MARG sensors,” in Proc. of IEEE/RSJ IROS, 2001.

[27] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling,” CoRR,
vol. abs/1803.01271, 2018.

[28] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[29] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using uncer-
tainty to weigh losses for scene geometry and semantics,” in Proc. of
IEEE CVPR, 2018.

10893

