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Abstract— This paper studies the adaptive reliable shortest
path (RSP) planning problem in a Gaussian process (GP)
regulated environment. With the reasonable assumption that
the travel times of the underlying transportation network
follow a multi-variate Gaussian distribution, we propose two
algorithms namely, Gaussian process reactive path planning
(GPRPP), and Gaussian process proactive path planning (GP4),
to generate online adaptive routing policies for the reliable
shortest path. Both algorithms take advantage of the posterior
analytical representation of GPs given past and/or imagined
future observations of certain links in the network, and cal-
culate the corresponding adaptive routing strategy for RSP.
Theoretical analysis and simulation results (on Sioux Falls
Network and Singapore road networks) show the superior
performance of GPRPP and GP4 over that of the state of the
arts.

Index Terms— adaptive path planning, Gaussian process,
proactive path planning, GP4, GPRPP.

I. INTRODUCTION

Stochastic shortest path (SSP) deals with the uncertain
nature of traffic network’s travel time, and offers a wide range
of objectives for travellers to select, depending on his/her
risk aversion attitude. Perhaps the most commonly used
objective in SSP is to find a path with the least expected time
(LET) [1], [2], [3], however, LET path focuses on minimizing
the path’s expected/mean travel time, which is only suitable
for risk-neutral travellers. However, many travellers are risk
averse, and prefer a more reliable path to the LET path, even
they know that the LET path offers a smaller expected travel
time [4].

This paper studies one of the SSP problems, namely,
the reliable shortest path (RSP) planning problem, in GP
regulated environments. To quantify RSP, many criteria have
been proposed, including (1) maximize the stochastic on-
time arrival (SOTA) probability [5], [6]; (2) minimize the
α-reliable travel time [7], [8]; (3) minimize expected disu-
tility (MED) [9], [10], [11]; and (4) minimize the mean-
variance combination [12], or mean-standard deviation com-
bination [13], [14], [15].

This paper assumes that the travel time over the underlying
transportation network is spatially correlated, and we believe
that this assumption is more realistic than the independent
travel time assumption. For example, traffic congestions on
a certain link will probably lead to high travel times over its
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upstream links. Moreover, we describe the joint distribution
of travel time with a multi-variate Gaussian distribution, i.e.
GP, which is the same assumption used in [12]. Empirical
studies based on real-world traffic data show that the use of
multi-variate normal distribution, i.e. GP, appears to reflect
observed path travel time distributions very well [16].

GP is both flexible to capture the spatial correlations
of travel time over the underlying transportation network,
and convenient to derive posterior distributions when given
a subset of samples. We take advantage of the analytical
representation of GP posterior, and propose a GP-based
reactive path planning algorithm which updates the posterior
travel time distribution whenever the ego vehicle collects a
subset of samples from the environment, and delivers to the
ego vehicle an updated RSP based on the posterior travel time
distribution. We further propose a proactive path planning
method, which plans the RSP even before the ego vehicle
enters the link. A sampling method is proposed to estimate
the RSP metric even before the ego vehicle enters a certain
link, and the proactive path planner will decide the best
link that the vehicle should take. Computational complexity
is analyzed theoretically, and the performance enhancement
over state of the arts is validated experimentally.

The contributions of the paper can be summarized as fol-
lows: (1) we propose two adaptive RSP planning algorithms
within GP-regulated environment, namely GPRPP and GP4,
both of which achieve better performance than that of state
of the arts; (2) deterministic sampling method is utilized to
ensure the applicability of GP4 even before the ego vehicle
collects the travel time sub-samples; and (3) simulation
results on a canonical transportation testbed (Sioux Falls
Network) and a realistic road network (Singapore arterial
network) show the superior performance of GPRPP and GP4.

II. LITERATURE REVIEW

This section provides a brief review over the aforemen-
tioned RSP objectives, namely (1) MED, (2) SOTA, (3)
α-reliable shortest path and (4) mean-variation/mean-std
minimization, and the corresponding solution algorithms.

The MED RSP introduces a disutility function represent-
ing the weight of a path as a function of the arrival time,
and seeks for a path with MED. The exponential disutility
function is proposed and solved in [17] for stationary and
independent travel time distributions. In [9], the authors
extend the MED RSP algorithm to application scenarios with
time-dependent and correlated travel time. The quadratic
disutility function which requires relaxation-based pruning
for the exact solution is reported in [18], and later, the authors
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solved the RSP MED problem with piecewise linear convex
disutility function [11].

The α-reliable RSP, as defined in [7], aims at finding a
path with the minimal high percentile travel time. Chen and
Ji propose to use genetic algorithms to find such a path [7].
The spatially dependent use case for α-reliable RSP is solved
in [19].

The SOTA criterion is first proposed by Frank, which
aims at finding a path with the maximal probability of
on time arrival [5]. The corresponding solution algorithms
can be roughly categorized into three groups, namely itera-
tive dynamic programming [20], integer programming [21],
and Lagrangian relaxation [22]. Fan et al., proposed a
dynamic programming technique, which iteratively optimize
the SOTA objective, and delivers the optimal next visiting
node as the routing policy. The method is applicable only to
discrete travel time distributions and the output of the SOTA
path is a dynamic routing policy instead of a prior path [20].
Cao et al., propose a data-driven SOTA path calculation
method, which transforms the problem into an integer linear
programming approach. The method is able to solve the
SOTA problem with various distribution types of travel time.
Lagrangian relaxation is a popular polynomial algorithm
solver for SOTA [21]. For example, Cao et al.use partial
Lagrangian method to relax the original SOTA problem into
a series of LET path finding problem, and the resulting
approximate solution has a polynomial computational com-
plexity [22].

The mean-variance or mean-std RSP incorporates the
path’s travel time variance or standard deviation directly into
the formulation, either as a constraint [23] or as an additional
term in the objective function [12], [24]. Sen et al. propose a
polynomial time algorithm to solve the mean-variance RSP
problem, in which the optimal path is guaranteed within a
pre-calculated set of paths [12]. The algorithms for mean-
std RSP can be roughly categorized into three groups:
(1) formulate the problem into a mixed integer non-linear
programming (MINLP) problem and use off-the-shelf opti-
mization solvers for the solution [25], [10]1; (2) transform
the problem into a series of easily solvable problems for
iterative solutions [14], [26]; (3) apply Lagrangian relaxation
and duality theory for approximate solution with duality gap
analysis [27], [28], [15].

The difference between our algorithm and canonical mean-
std/mean-variance RSP algorithms is that we output a routing
policy which only delivers the next node/link to visit and
relay on the complete path calculation to later decision
stages, while most state of the arts are delivering a complete
a priori path. We will show in the Methodology Section
that postponing the complete path calculation to later stages
enables a better policy as later stage information helps with
the posterior GP update.

1Note that some MINLP approaches also make use of (partial) Lagrangian
relaxation for approximate solutions.

III. PROBLEM FORMULATION

This section introduces the notations used throughout the
paper, followed by the mean-variance and mean-std RSP
problem statement. Then, we lay down two reasonably
assumptions used in the paper, which ‘naturally’ avoid the
cycle-containing RSP solution without explicitly stating the
cycle-elimination constraints.

A. Notations

Let G(N , A) represent a directed and connected trans-
portation network, where N (|N | = n) is the set of nodes
and A (|A| = m) is the set of links. Let c ∈ Rm be a random
variable (RV) vector, which represents the joint travel time
distribution over G. This paper assumes that c ∼ N (µ,Σ),
where µ ∈ Rm is the mean of c, and Σ ∈ Sm×m++ is the
positive co-variance matrix capturing the correlation between
link travel times. It is worth noting that we are looking at
the stationary but stochastic environment in which the travel
time distribution does not change over time.

Other related variable notations are listed as follows: (1)
i, j ∈ N refers to the node index with r representing the
origin and s representing the destination; (2) ij, kl ∈ A
refers to link index; (3) xij ∈ {0, 1} is a binary decision
variable, when xij = 1, it means that link ij is selected for
the RSP; (4) σij is the standard deviation of link ij’s travel
time, Cov(ij, kl) is the co-variance of travel times between
link ij and link kl (both σ2

ij and Cov(ij, kl) are elements of
the co-variance matrix Σ); and (5) ζ ≥ 0 is the reliability
coefficient representing the user’s risk aversion attitude.

B. Problem Statement

The output of our algorithm is a routing policy which min-
imizes the mean-std or mean-variance linear combination of
the reliable shortest path. The optimal routing policy depends
on the backbone RSP problem formulation which outputs the
a priori optimal path, thus we present the backbone problem
formulations for mean-variance RSP and mean-std RSP in
(P1) and (P2), respectively:
(P1):

min
x

µ>x+ ζx>Σx

s.t.
∑
j:ij∈A

xij−
∑

k:ki∈A

xki=


1, i = r

−1, i = s

0, i ∈ N−{r, s}
,

xij ∈ {0, 1}.

(P2):

min
x

µ>x+ ζ
√
x>Σx

s.t.
∑
j:ij∈A

xij−
∑

k:ki∈A

xki=


1, i = r

−1, i = s

0, i ∈ N − {r, s}
,

xij ∈ {0, 1}.

Note that in both (P1) and (P2), the constraints are flow
balancing constraints with boolean decision variables. There
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have been many algorithms for efficient solutions to (P1) and
(P2), and one can refer to [28] for the mean-std RSP review
and [24] for the mean-variance RSP review. In this paper, we
will use (P1) and (P2) as the backbone problem formulation
and rely on one of the canonical solvers, i.e. MINLP for
the solution. We take advantage of the GP assumption of
the underlying transportation network, and transform the
backbone problem (P1) and (P2) to reach the optimal routing
policy.

C. Assumptions

In this subsection, we lay down several reasonable as-
sumptions so as to avoid the ‘cycling’ problem, i.e. the
optimal path contains cycles.

Assumption 1 (Travel-Time Assumption). The mean travel
times of all the links are strictly positive, i.e. µ � 0.

Assumption 2 (Cycle Co-variance Assumption). Removing
a cycle in a path results in a path whose total variance is
strictly less than the original path.

It is intuitive to justify that Assumption 1 is reasonable, as
any link that the traveller travels on would consume a time,
therefore, the mean-travel time for any link is greater than
zero. Additionally, Assumption 2 is also reasonable, because
travel on additional links can only add uncertainties, and
hence increase the variance.

Theorem 1. The optimal solution to (P1) or (P2) cannot be
a cycle-containing path.

Without loss of generality, we only sketch the proving
process of the case with one cycle in the path. The proof
sketch process is as follows: we start with the assumption
that the optimal path to (P1) or (P2) is a one-cycle containing
path. We remove the cycle contained in the path, and the
resulting cycle-free path is still a valid path connecting the
origin (r) with the destination (s). Then, we verify that the
cycle-free path has a strictly lower mean travel time and
variance, which indicates that the cycle-free path holds a
smaller objective value than the corresponding one-cycle
containing path. Then, the starting assumption is invalid, and
hence the proof is completed.

Next, we give out the following two theorems without
proof due to page limitations and the proving process is
straightforward after referring to [29].

Theorem 2. In GP-regulated transportation network, the
‘risk-averse’ α-reliable RSP (α ≥ 0.5) is equivalent to a
mean-std RSP, with ζ = Ψ−1(α), where Ψ(x) is the cu-
mulative distribution function (CDF) of the standard normal
distribution.

Theorem 3. In GP-regulated transportation network, the
‘risk averse’ SOTA RSP2 with deadline T is equivalent to
a mean-std RSP, with a specific ζ, which returns the optimal

2The ‘risk averse’ SOTA RSP refers to the SOTA problem with a deadline
T larger than the LET path’s expected travel time.

path with the objective value equal to T , and the bipartite
algorithm can be used to identify ζ.

IV. METHODOLOGY

This section introduces the GPRPP and GP4 algorithm for
mean-variance RSP (P1) and mean-std RSP (P2) solutions.
Both GPRPP and GP4 will output an adaptive routing
policy instead of a priori path. Since there exist many
efficient solves for mean-variance RSP [12], [24] and mean-
std RSP [28], [10], [15], [26], we will rely on those state of
the arts as the backbone solution for (P1) and (P2), and take
advantage of the GP’s prior-posterior analytical relationship
to output a better routing policy.

A. Parameter Update for Posterior Gaussian Process

In both GPRPP and GP4, we take advantage of the
analytical posterior Gaussian process expressions for a better
routing policy. Therefore, this subsection introduces the
posterior GP representation form given a subset of samples.

Assume X ∈ Rn is a GP, i.e. X ∼ GP(µ,Σ), and X is

partitioned into two subsets: X =

[
X1

X2

]
, with X1 ∈ Rp and

X2 ∈ R(n−p). Correspondingly, µ and Σ are partitioned as

µ =

[
µ1

µ2

]
and Σ =

[
Σ11 Σ12

Σ21 Σ22

]
, respectively. Then the

distribution of X1 conditional on X2 = x2 is multivariate
normal X1|X2=x2

∼ N (µ1|2,Σ1|2) where

µ1|2 = µ1 + Σ12Σ
−1
22 (x2 − µ2), (1)

and the posterior co-variance matrix

Σ1|2 = Σ11 −Σ12Σ
−1
22 Σ21. (2)

B. Gaussian Process Reactive Path Planning (GPRPP)

The intuition of GPRPP is straightforward: it will take
the backbone solution to (P1) or (P2) as the current routing
policy, and suggest the first link based on the ego vehicle’s
current location. When the ego vehicle takes the suggested
action, i.e. travels on the suggested link (xij), a realization
of that link cij (denoted as rij) will be observed, and the
posterior distribution of all the other links in the underlying
transportation network can be updated as: c1|cij=rij ∼
N (µ1|2,Σ1|2), where µ1|2 and Σ1|2 can be easily computed
after referring to Eq. 1 and Eq. 2, respectively.

The flow process of GPRPP is depicted in Algorithm 1.
When supplied with required parameters, i.e. µ, Σ and ζ,
GPRPP will loop between calling the backbone solver, and
the following three steps: (1) execute the link; (2) collect the
travel-time realization over the link; (3) calculate posterior
travel-time distribution based on the collected sample.

C. Gaussian Process Proactive Path Planning (GP4)

The previous subsection introduces GPRPP, which uses
the collected travel time for posterior travel time distribution
calculation, and recursively calls the backbone solver for an
adapted routing policy. In this subsection, we introduce a
proactive routing policy, which determines the best routing
policy even before the vehicle enters the link and collects
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Algorithm 1: The GPRPP Algorithm Flow Process
Input: GP parameters for the underlying

transportation network (µ and Σ), reliability
coefficient ζ, current node r, destination node
s.

Output: GPRPP adaptive routing policy.
1 Set counter k = 0, µk = µ, Σk = Σ, rk = r.
2 while rk 6= s do
3 call the backbone solver for (P1) or (P2) with

parameters µk,Σk,ζ, rk and s;
4 get the RSP path xk;
5 Execute the RSP selected link (xrkq) which starts

at node rk and ends at node q;
6 collect the sampled travel time crkq;
7 calculate the posterior distribution parameters µp

and Σp according to Eq. 1 and Eq. 2;
8 k ← k + 1;
9 µk ← µp;

10 Σk ← Σp;
11 rk = q;

12 Final.

the travel-time data. Note that we use (P1) as the routing
objective, and we can simply change the backbone solver to
(P2) if (P2) serves as the objective.

We denote the deterministic adaptive routing policy as π,
which will output a determined next visiting node (π(r))
based on the current node (r), destination node (s), and GP
parameters (µ, and Σ). The policy is adaptive with respect
to the updated GP parameters. We define the value of a
node as the expectation of the mean-std value if we let
the vehicle follow the proactive routing policy. Thus, the
recursive relationship between the value for the current node
value and the value of the next node is expressed as follows:

V π(r;µ,Σ) = E
(
cr,π(r) + V π(π(r);µp,Σp)

)
, (3)

where µp and Σp are computed according to Eq. 1 and Eq. 2,
based on the instantiated value of cr,π(r). The value for the
best policy out of the whole policy space can be recursively
represented as:

V ∗(r;µ,Σ) = min
π

E
(
cr,π(r) + V ∗(π∗(r);µp,Σp)

)
. (4)

Eq. 4 is the Bellman equation for GP4, and theoretically,
we can use policy iteration or value iteration to find the
optimal policy. However, recursively bootstrapping the value
function is computationally complex due to the large state
space. In this paper, we use the backbone solver as mentioned
in the last subsection to estimate the value of a node, i.e. the
second part of the right hand side (RHS) of Eq. 4. In this
case, we can calculate V ∗ through evaluating the RHS of
Eq. 4 and hence decide the optimal policy.

Now, we fix a deterministic policy π, and calculate the
term E

(
cr,π(r) + V ∗(π(r);µp,Σp)

)
. Note that µp and Σp

are calculated through Eq. 1 and Eq. 2, and both terms

depend on the sampled travel time cr,π(r). The backbone
solver ensures that when supplied with related parameters,
i.e. µp, Σp, r, s, and ζ, the estimation of V ∗, i.e., V̂ ∗ can be
calculated. Since there is no analytical representation form
for explicit routing policy evaluation, we approximate the
value of the routing policy with a computer-implementable
term. The derivation process is as follows:

E
(
cr,π(r) + V ∗(π(r);µp,Σp)

)
=

∫ ∞
−∞

(
x+ V ∗(π(r);µp(x),Σp(x))

)
p(x) dx

=

∫ ∞
−∞

(
x p(x) + V ∗(π(r);µp(x),Σp(x)) p(x)

)
dx

=E(X) +

∫ ∞
−∞

V ∗(π(r);µp(x),Σp(x)) p(x) dx

=E(cr,π(r)) +

∫ ∞
−∞

V ∗(π(r);µp(x),Σp(x)) p(x) dx

≈E(cr,π(r)) +

∫ ∞
−∞

V̂ ∗(π(r);µp(x),Σp(x)) p(x) dx

≈E(cr,π(r)) +

N∑
i=1

V̂ ∗
(
π(r);µp,Σp

)
p(xi) δx. (5)

The essence of the transformation is to ‘deterministically’
pre-sample (which we call deterministic sampling3) the travel
time data over the ‘to-be-executed’ link, and approximate
the integral with a summation term. We give the following
theorem, whose proof is straightforward and omitted here.

Theorem 4. Suppose that the backbone solver has an accu-
rate node value estimation, i.e. V̂ ∗ = V ∗, and as N → ∞,
i.e., δx→ 0, Eq. 5 approaches V π(r;µ,Σ), which means:

lim
N→∞

N∑
i=1

V̂ ∗
(
π(r)

)
p(xi) δx+ E(cr,π(r)) = V π(r;µ,Σ).

The essence of GP4 is to relay the value estimation of
a given node to its succeeding node. The vehicle will go
through N ‘proactively’ sampled travel time along the chosen
link, and evaluate the value of the succeeding node based on
the posterior Gaussian distribution with the backbone solver.
Then, GP4 will calculate the expectation of the mean-std
(or mean-variance) of the policy. Here, the word ‘proactive’
means that the sampled travel time must be within the
corresponding interval δx. The algorithm flow process of
GP4 is depicted in Algorithm 2.

V. COMPUTATIONAL COMPLEXITY ANALYSIS

This section analyzes the computational complexity of
GPRPP and GP4. The computational cost of an operation
can often be expressed through the number of floating-
point operations (flops). A flop is defined as an addition,
subtraction, multiplication or division of two floating-point
numbers. To evaluate the complexity of an algorithm, we

3We partition the travel time sampling space into N blocks, and ‘de-
terministically’ pick the center of each block as the sampled travel time.
Compared to the normal sampling method, deterministic sampling avoids
the sampling variance.
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Algorithm 2: The GP4 Algorithm Flow Process
Input: GP parameters for the underlying

transportation network (µ and Σ), reliability
coefficient ζ, current node r, destination node
s, partition number N .

Output: GP4 adaptive routing policy.
1 Set counter k = 0, µk = µ, Σk = Σ, rk = r.
2 while rk 6= s do
3 ∀j ∈ N such that rkj ∈ A: calculate the

estimated node value according to Eq. 5, if the
deterministic policy π selects j as the next node
to visit;

4 During the calculation process, call the backbone
solver for (P1) N times with estimated posterior
GP parameters (µp and Σp);

5 Select the node j which minimizes
(
E(cr,j) +∑N

i=1 V̂
∗(j;µp(xi),Σp(xi)) p(xi) δx

)
;

6 Execute the GP4 selected link (xrkj) which starts
at node rk and ends at node j;

7 collect the sampled travel time crkj ;
8 calculate the posterior distribution parameters µp

and Σp according to Eq. 1 and Eq. 2;
9 k ← k + 1;

10 µk ← µp;
11 Σk ← Σp;
12 rk = j;

13 Final.

count the total number of flops; express it as a function
(usually a polynomial) of the dimensions of the matrices and
vectors involved, and simplify the expression by ignoring all
terms except the leading terms.

In both GPRPP and GP4, there are two basic operations,
namely (1) posterior GP parameter computation, and (2)
backbone solver for (P1) or (P2). The equations for posterior
GP update are Eq. 1 and Eq. 2, and the computational
complexity is O(|A|p), where p = 4 for posterior mean
computation and p = 5 for posterior co-variance computa-
tion. It is worth noting that the computational complexity
only depends on the number of arcs (|A|), but does not
depend on the number of nodes (|N |) in the network. The
backbone solver for (P1) and (P2) depends on the specific
research works, and for (P1), there are polynomial solvers
for the exact solution, e.g. [12], and for (P2), polynomial
solvers only exist for approximate solutions, and approximate
solutions with polynomial computational complexity exist,
e.g. [28], [10]. This paper uses O(|N |p1 |A|p2) as a general
form for the backbone solver’s computational complexity
representation.

Examining Algorithm 1, we can see that GPRPP essen-
tially loops between the backbone solver and posterior GP
computation, and the maximal number of loops is |N |,
thus the computational complexity of GPRPP is |N | ×
O(|N |p1 |A|p2+p) = O(|N |p1+1|A|p2+p). The computation

process of GP4 is similar to that of GPRPP, but inside the
node value evaluation procedure, it will proactively sample
the travel time data, and calculate the expected mean-std
value, thus the computational complexity is represented as
O(N |N |p1+1|A|p2+p).

VI. TWO ILLUSTRATIVE EXAMPLES

In this section, we present two simple yet illustrative
examples to show how and why GPRPP and GP4 outperform
state of the arts. In both examples, we set ζ = 0, and in
this case, both (P1) and (P2) are having the same objective,
which is the least expected time (LET). Fig. 1(a) shows a
transportation network with 3 nodes and 3 links, and the
vehicle is supposed to navigate from node 1 to node 3. The
corresponding mean travel time of each link is marked in the
figure, and the covariance matrix (Σ) is set as:

Σ =

 2 −1 1
−1 2 0
1 0 1

 . (6)

Since ζ = 0, both (P1) and (P2) become an LET path
seeking problem. We use Dijkstra’s algorithm [30] as the
backbone solver, and the optimal a prior path is x =
(1, 0, 1)>, which selects link 1 and link 2 to connect node 1
and node 3. However, if we run GPRPP; collect the sampled
travel time data over link 1, and calculate the posterior travel
time distribution of link 2 and link 3, we would find that
there is roughly a 50% chance that link 3 becomes the better
route choice. For example, if link 1’s sampled travel time is
c1 = 8, we calculate the posterior mean of link 2 (µ2|1) and
link 3 (µ3|1) according to Eq. 1, and the result is µ2|1 = 11,
µ3|1 = 9.1. In this case, it is apparent that the ego vehicle
should select link 3 instead of link 2 to reach node 3. In
fact, after simple derivation, we can find that as long as the
sampled travel time of link 1 is less than 9.9, link 3 would
be a better route choice than link 2. Considering that link
1’s mean travel time is 10, it means that roughly 50% of the
time, link 3 becomes the optimal route choice.

1 2 3
10

10

10.1

1

2

3

(a) Example for GPRPP

1 2 3
10

10.1

10.2

20

4

3

2

1

(b) Example for GP4

Fig. 1: Two simple yet illustrative transportation networks:
the vehicle is supposed to go from node 1 to node 3, and
the boxed number over each link refers to the link’s mean
travel time.

Fig. 1(b) shows a slightly more complex transportation
network with 3 nodes and 4 links, whose mean travel times
are marked in the figure. The vehicle is also supposed to
navigate from node 1 to node 3. The covariance matrix (Σ)
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is set as:

Σ =


2 −1 1 0
−1 2 0 0
1 0 1 0
0 0 0 1

 . (7)

With either Dijkstra’s algorithm or GPRPP, link 4 will be
selected to navigate the vehicle from node 1 to node 3.
However, GP4 will proactively sample the travel time of
link 1 and link 4, and evaluate the resulting expected travel
time. After evaluating Eq. 5 with N = 100, GP4 selects link
1 (instead of link 4) to execute with expected total travel
time at 19.9, while link 4’s expected travel time is 20. This
simple example shows that even for the LET path seeking
problem, GP4 is able to yield better routing strategies than
both GPRPP and other state of the arts.

VII. SIMULATION RESULTS AND ANALYSIS

In this section, we first test the proposed two algorithms
(GPRPP and GP4) in the Sioux Falls Network (Fig. 2), which
is a canonical testbed for transportation studies. Then, we
present the experimental results on a realistic network (Sin-
gapore arterial road network). For (P1)’s backbone solver, we
use the algorithm proposed in [12], which has a polynomial
computational complexity, and for (P2)’s backbone solver,
we use the most recently proposed mean-std RSP solver [28].

A. Sioux Falls Network

Sioux Falls Network (Transportation Test Problems) has
24 nodes and 76 links with associated link travel times. The
links’ mean travel times are set the same as Table 1 in [14],
and the covariance matrix is randomly generated with the
square root of each diagonal element within 0.15 of the
expected travel time of the corresponding link4, and each
off-diagonal element between −0.225 and +0.0225 of the
product of the corresponding two links’ expected travel time.
Both algorithms are tested to generate RSP from node 1 to
15. We use the algorithm proposed in [28] as the backbone
solver, and N is set to be 100 for the GP4 algorithm. As
the routing algorithm depends on the sampled travel time
along the executed links, we run the algorithm for 1000
independent times and the average performance metric is
reported in Fig. 3.

We test the performance of GPRPP and GP4 against the
backbone solver for both the mean-var objective (Fig. 3(a))
and the mean-std objective (Fig. 3(b)). For the backbone
solver, we use the algorithm proposed in [12] for the mean-
var objective, and use the algorithm in [28] for the mean-std
objective. In the figure, we can see that the performance
metric increases for all of the algorithms as we increase
the reliability coefficient (ζ), but both GP4 and GPRPP are
having lower values than that of the backbone solver.

4This is to align with the experimental settings in [14], which generates
the std values within 0.15 of the expected link travel time.
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Fig. 3: Performance comparison of GPRPP and GP4 against
the backbone solver for the mean-var objective (P1) and
mean-std objective (P2). We report the ‘ln’ value of the
performance metric for better visualization purpose.

B. Singapore Arterial Road Network

Both GPRPP and GP4 are also tested on a realistic
use case: Singapore arterial road network. To construct the
transportation network, we extract all the nodes and links of
the whole Singapore road network from Open Street Map
(OSM) [31], and then remove some small road segments
while keep the major/arterial roads (including highways).
The Singapore arterial road network consists of 6, 476 nodes
and 10, 253 links. Although we do not have the mean travel
time statistics for the Singapore network, OSM offers the
length of each road segment and the corresponding speed
limit. In this paper, we assume that the vehicles normally
travel at half of the speed limit, and the mean travel time can
be calculated as µij = 2lij/vij , where lij is the length of link
ij, and vij is the corresponding speed limit. The covariance
matrix is generated randomly following the same mechanism
as described in the Sioux Falls network subsection. We
randomly generate 20 OD pairs, and for each OD pair, we
run the GPRPP and GP4 algorithm for 200 independent times
and report the corresponding performance in Fig. 4. From the
figure, we can see that both GPRPP and GP4 outperform the
state of the arts (backbone solver in the figure), and GP4, in
general, is better than GPRPP. The computation time for each
decision making step heavily depends on how the backbone
solver behaves, thus we do not report the actual values here,
but they are at the same time scale of the backbone solver as
analyzed in the computational complexity analysis section.
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Fig. 4: Performance comparison of GPRPP and GP4 against
the backbone solver for the mean-var objective (P1) and
mean-std objective (P2) on Singapore arterial network. ‘ln’
values are used for better visualization purpose.

VIII. CONCLUSION AND FUTURE WORKS

This paper presents GPRPP and GP4 for reliable shortest
path planning. By reasonably assuming that the travel time
distribution over the underlying transportation network fol-
lows a GP, both algorithms are able to output an adaptive
routing strategy which is more reliable than state-of-the-art
solutions. Illustrative use cases show why and how GPRPP
and GP4 outperform state of the arts. Simulation results on
canonical testbed as well as a realistic road network verify
the superior performance of both algorithms.

In the future, we plan to replace the GP assumption with
the log-GP distribution. Real travel time data is strictly
positive, but GP can never eliminate the negative travel time
samples. In the meanwhile, we will propose a robust GP path
planning algorithm in which the GP parameters are within
a certain range instead of precisely known in the current
paper. More experiments exploring what covariance function
benefits the GPRPP/GP4 algorithm will also be conducted.
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