
SwarmLab: a MATLAB Drone Swarm Simulator

Enrica Soria, Student Member, IEEE, Fabrizio Schiano, Member, IEEE,
and Dario Floreano, Senior Member, IEEE,

Abstract— Among the available solutions for drone swarm
simulations, we identified a lack of simulation frameworks
that allow easy algorithms prototyping, tuning, debugging and
performance analysis. Moreover, users who want to dive in
the research field of drone swarms often need to interface
with multiple programming languages. We present SwarmLab,
a software entirely written in MATLAB, that aims at the
creation of standardized processes and metrics to quantify
the performance and robustness of swarm algorithms, and in
particular, it focuses on drones. We showcase the functionalities
of SwarmLab by comparing two decentralized algorithms from
the state of the art for the navigation of aerial swarms in clut-
tered environments, Olfati-Saber’s and Vasarhelyi’s. We analyze
the variability of the inter-agent distances and agents’ speeds
during flight. We also study some of the performance metrics
presented, i.e. order, inter- and extra-agent safety, union, and
connectivity. While Olfati-Saber’s approach results in a faster
crossing of the obstacle field, Vasarhelyi’s approach allows
the agents to fly smoother trajectories, without oscillations.
We believe that SwarmLab is relevant for both the biological
and robotics research communities, and for education, since it
allows fast algorithm development, the automatic collection of
simulated data, the systematic analysis of swarming behaviors
with performance metrics inherited from the state of the art.

Index Terms: Swarms, Agent-Based Systems, Simulation and
Animation, Aerial Systems: Applications

SUPPLEMENTARY MATERIAL

Supplementary video: https://youtu.be/xMXA9OWSxe8.
SwarmLab is available on Github: https://github.com/lis-
epfl/swarmlab.

I. INTRODUCTION

Drone applications have exploded in the last decade and,
recently, the availability of inexpensive hardware has awoken
the interest for aerial swarms where several flying robots
collaborate to achieve a collective task [1], [2]. Benefits
of multi-drone systems are envisioned for a wide range of
missions including search and rescue [3], long-term moni-
toring [4], sensor data collection [5], indoor navigation [6],
environment exploration [7], and cooperative grasping and
transportation [8]. In the entertainment industry, the latest
challenge is the coordination of fleets of hundreds of drones
that light up the night sky with aerial shows, as Intel1 and
Ehang2 have displayed.

The authors are with the Laboratory of Intelligent Systems (LIS), École
Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.

Corresponding author: enrica.soria@epfl.ch
1https://intel.com/content/www/us/en/technology-innovation/aerial-

technology-light-show.html
2https://ehang.com/formation

Fig. 1. 3D swarm visualizations in SwarmLab. In (a), 5 quadcopter
drones coordinate in collective flight, while, in (b), a swarm of 15 drones
simulated with point-mass dynamics executes a collision avoidance maneu-
ver around an obstacle. Both snapshots are captured at 10s of simulation.

However, the first step towards the deployment of such
complex systems in real-world scenarios is simulation [9].
The development of algorithms and applications for au-
tonomous aerial vehicles requires the availability of a suitable
simulation framework for rapid prototyping and simulation
in reproducible scenarios. This is desirable in all robotics
fields, but it is especially relevant for collective systems such
as drone swarms, where errors can propagate through the
individuals and lead to catastrophic results [10]. Although
multiple open-source frameworks exist for simulating aerial
robots [11]–[14], the majority are focused on the realism of a
single robot and cannot manage a large number of drones in
real-time. On the other side, simulators that support multiple
robots do not implement the nonlinear robot’s dynamics or
they require the interaction with several programming lan-
guages. Besides, there is no framework that provides ready-
to-use control algorithms, debugging tools and performance
analysis functionalities for aerial swarms. The potential user
has to develop their own tools compatible with the chosen
framework, which are not standard and prone to error.

In this work we propose SwarmLab, a simulator for single
drones and drone swarms. Its main goal is to propose an
alternative to existing robotic simulation solutions, that is
explicitly centered on drone swarms (see Fig. 1). We used
MATLAB3, a scripting programming platform that allows
us to implement and debug algorithms rapidly, use a large
database of built-in functionalities, and create plots and
videos with minimum effort. SwarmLab allows both accurate
simulation of one drone, and efficient simulation of swarming

3https://mathworks.com/products/matlab.html

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 8005



Fig. 2. Aerial swarms publications. Number of publications con-
taining the words ‘aerial swarms‘ between the years 2000 and 2019.
Source: http://apps.webofknowledge.com.

behaviors with hundreds of agents. Concerning swarming,
which is our focus, we provide support for fast instanti-
ation of drone swarms, and the creation of environments
with obstacles. We also include control algorithms from the
state of the art, extensive plotting and debugging tools, 3D
visualization functionalities, and performance analysis tools.
These features make our software relevant for the booming
biological and robotics research communities in the field of
aerial swarms (see Fig. 2), and for education.

The rest of the paper is organized as follows. Sec-
tion II discusses available alternatives for robotic and, more
specifically, drone simulations, while highlighting the gap
that we aim to fill with SwarmLab. Section III describes
the architecture of the software and guides potential users
through its main functionalities. Finally, Section IV shows
how SwarmLab can be used for a comparative analysis
of swarm algorithms and analyzes the computational time
required for different simulation configurations.

II. RELATED WORK

Currently, many robotic simulators are available on the
market. A subset of them allows drone swarm simulations,
but still require a considerable amount of time and pro-
gramming languages for the prototyping and testing of aerial
swarms algorithms, with the inconveniences stated in Sec I.
A complete survey of the state of the art in robotic simulation
is beyond the scope of this paper (see [15]–[17] for a more
detailed overview and performance comparison). Instead, we
aim to highlight the main features they offer and point out
the needs that led to the development of SwarmLab.

Among the most well-known open-source 3D simulators
for robots, we find Gazebo, WeBots, V-REP, ARGoS, and,
more recently, AirSim [11]–[14], [18], [19]. Gazebo [11],
[18] can simulate the physics and dynamics of any mechani-
cal structure modeled with joints, and it offers a large library
of ready-to-use models, drones included. Gazebo also allows
integration with flight controller stacks for Software-In-The-
Loop (SITL) drone simulation [20]. Alternatively, RotorS is
an extension to Gazebo designed for multirotors that includes
example controllers, besides additional models and simulated
sensors [21], [22]. Users can code their functionalities in
C++ and interface through ROS. WeBots, recently released
open-source, uses the same physics engine of Gazebo, but

provides APIs for a large number of programming languages
and includes drone models [12] natively. The V-REP simu-
lator, now continued under the name of CoppeliaSim, offers
features for easier editing of robots and other models [13].
Development can be performed by means of the built-in
Lua interpreter or by using a C or Python API. More
oriented to swarm robotics, ARGoS represents a lightweight
alternative that offers a good tradeoff between scalability and
extensibility [19]. It allows the user to simulate a larger
number of robots and it provides the possibility to use
physics engines of different types, but it does not include
drone models natively. Robots can be programmed either
through Lua scripts or in C++. Specifically dedicated to
drones and cars, AirSim [14] is a more recent simulator built
on Unreal Engine 4 and as Gazebo, it allows SITL integration
of flight controllers such as PX4. In AirSim, multi-agent
simulations are easy to set up, and custom functionalities
can be coded thanks to C++ and Python APIs.

All the simulators above are based on powerful 3D ren-
dering engines, and they are mainly coded in C++. As a
consequence, they provide graphical realism. However, they
often require familiarity with more than one programming
language. Also, they necessitate the addition of custom
features for simulating an aerial swarm, which makes these
simulators unsuitable for quick tests. V-REP and WeBots
include drone models natively, but drone swarm control and
navigation algorithms must be designed, coded, and tuned
by the user.

The simulators mentioned above are general-purpose
robotic simulators. Instead, specific to drone simulation, we
find the work by Beard et al. [23]. They describe fixed-
wing drone systems with a waterfall architecture, where high-
level blocks steer the drone to a goal destination, and lower-
level blocks simulate physics and sensors. Driven by educa-
tional purposes, the authors released open-source templates
in MATLAB and Simulink5. However, this work does not
include quadcopter dynamics and swarming functionalities.
However, it constitutes the foundation of SwarmLab.

To the best of our knowledge, the only publicly available
simulators geared towards aerial swarms are robotsim6 [24]
and the work of D’Urso et al. [25]. The first is a simulator
written in C and, although it goes in the direction of Swarm-
Lab, no drone dynamics are implemented and architectural
modularity is missing. The second is a software middleware
that coordinates available tools (Gazebo, ArduCopter7 and
ns-38) for the realistic simulation of the physics, graphics,
flight control stack, and communication of interconnected
drones and computers. This software is thought as a bridge
towards a real-world implementation. However, its realism
comes at the expense of its ease of use. Indeed, this simulator
does not have the advantage of being contained within a
single software such as MATLAB. Moreover, none of the

4https://www.unrealengine.com
5https://github.com/randybeard/mavsim template files
6https://github.com/csviragh/robotsim
7https://ardupilot.org/copter/
8https://www.nsnam.org/

8006



simulators mentioned in this section provide functionalities
for plotting, analysis, and performance assessment of the
collective motion, which represents a limitation that we
intend to overcome.

III. SOFTWARE ARCHITECTURE

SwarmLab is written in MATLAB for several reasons.
Firstly, this is a scripting language that operates at a high
level of abstraction and therefore does not require extensive
programming experience. Secondly, this framework provides
several built-in toolboxes for design, control, analysis, and
visualization of the studied systems, that reduce even further
the programming effort and make it widely popular among
the scientific community for education and research appli-
cations. Moreover, code generation features are available
to automatically translate the code to C/C++ and reduce
the computational time or embed the algorithms on the
robots controllers. SwarmLab follows the Object Oriented
Programming (OOP) paradigm and its modular structure is
made of the following main components:
• parameter scripts for the single drone, swarm, and

environment definitions;
• the Drone and Swarm classes;
• graphical classes that allow run-time and offline 3D

visualization of the Drone/Swarm, their state variables
and performance;

• example scripts and a README file that guide the user
through the main functionalities of the simulator.

In this work, we call a swarm a set of N agents labeled
by i ∈ {1, . . . , N}. The position and velocity of the i-th
agent in the inertial frame are denoted by pi and vi ∈ R3,
respectively. To keep our notation concise we let dij =
‖pj − pi‖ represent the distance between two agents i and
j, where ‖ · ‖ denotes the Euclidean norm. We model the
swarm with a directed sensing graph G = (V, E), where the
vertex set V = {1 . . . N} represents the agents, and the edge
set E ⊆ V × V contains the pairs of agents (i, j) ∈ E for
which agent i can sense agent j. We denote as Ni = {j ∈
V| (i, j) ∈ E} ⊂ V the set of neighbors of an agent i in G.
Another concept we borrow from algebraic graph theory is
the algebraic connectivity that can be measured through the
so-called connectivity eigenvalue. This is the second smallest
eigenvalue of the Laplacian matrix [26] associated with the
undirected graph G′ obtained from G and it is usually denoted
by λ2. The agents are drones, and we will mainly consider
quadcopters. Also, we consider a set of M obstacles labeled
by m ∈ {1, . . . ,M} that populate the environment.

A. Drone

The Drone class represents the building block for simulat-
ing a swarm. This class supports the definition of quadcopters
or fixed-wing drones, based on the models in [27] and [23]
respectively. A Drone instance is defined by:
• parameters related to the chosen platform (e.g., mass,

aerodynamic and control parameters),
• current state vector: (pn, pe, pd, u, v, w, φ, θ, ψ, p, q, r) ∈

R12. This vector is respectively composed by the north,

east and down position coordinates in the inertial
frame, the linear velocity measured along the x, y, z
axes of the body frame, three Euler angles describing
the drone orientation, i.e. roll, pitch, and yaw, and the
angular velocities measured in the body frame,

• path planning variables, including a list of waypoints,
• graphic variables for the visualization of the drone and

the plotting of the state variables.
The methods provided by this class allow the creation of new
instances, the computation of the kinematics and dynamics
based on the physical parameters, and the control of the
drone thanks to one of the two autopilots tailored for either
quadcopters or fixed-wing drones. Moreover, for the simula-
tion of a single-drone mission, high-level functionalities for
path navigation are provided, following the same structure
of [23].

B. Swarm

The Swarm class contains the necessary properties and
methods to instance, initialize and manage Swarm objects.
These objects are made of an ensemble of dynamic agents
of type Drone. Their fundamental properties are:
• drones: a vector of Drone objects,
• nb agents: the number of agents included in the swarm,
• algorithm: the selected algorithm for swarm navigation.
The workflow of a swarm simulation is summarized in

Fig. 3. The user can start a simulation either by running
an example script or by interacting with a Graphical User
Interface (GUI) that accounts for real-time changes of the
swarm parameters. When the simulation starts, a number of
Drone instances are created and added to the Swarm. Also,
the user can decide to instance a swarm viewer to visualize
the evolution of the swarm state during the simulation
time. The main simulation loop computes at every iteration
the control commands for every drone of the swarm and
updates their states. Control commands for a given drone i
only depend on its neighbors Ni. Depending on the user’s
choice, the Swarm class uses a different swarm algorithm
to compute commands for every drone. Alternatively, the
user can implement and test their own control algorithm as
a method of the Swarm class where the drones’ states are
accessible, by following the available examples.

C. Swarm algorithms

In SwarmLab, we implemented and adapted two represen-
tative algorithms belonging to the category of decentralized
swarming. The reason for this choice is that a decentralized
approach can make the system easily scalable and robust
to the failures of a single individual. The first algorithm is
authored by Olfati-Saber, who proposes a formal theoretical
framework for the design and analysis of swarm algorithms
based on potential fields and graph theory [28]. It is based
on the construction of a collective potential that penalizes
the deviation of the agents from a lattice shape. In addition,
a consensus term makes the agents agree on their speed
and velocity direction. At the equilibrium, in the absence of
obstacles, the agents occupy positions at a constant distance

8007



Fig. 3. SwarmLab simulation workflow. From the top left, in clockwise order: (1) in the GUI, the user sets the parameters related to the simulation,
drone typology, swarm algorithm and environment. Alternatively, parameters can be set in specific MATLAB scripts. Then, he launches the simulation; (2)
the main simulation loop computes control commands for the drones, based on the information of the map and neighboring drones; (3) both real-time
and post-simulation plotting of the state variables help the user with the analysis and debugging of the swarming behavior. Moreover, at the end of the
simulation the user can inspect the swarm performance metrics.

Fig. 4. Neighbor selection. Illustration of different neighborhoods for
varying values of the euclidean (first row) and topological distance (second
row). The focal agent i, i.e. the agent taken into account, is highlighted in
red, while its neighbors j ∈ Ni are in light red. On top, the shaded areas
indicate the influence area of the focal agent.

from their neighbors and translate with constant velocity. The
second algorithm we implemented is an adaptation of the
recent Vasarhelyi’s algorithm, defined by the following rules:
repulsion to avoid inter-agent collisions, velocity alignment
to steer the agents to an average direction, and self-propulsion
to match a preferred speed value [24]. In addition, the
algorithm includes friction forces that reduce oscillations
and ease the implementation on real robots. Finally, both
algorithms propose an obstacle avoidance behavior to deal
with convex obstacles. In several engineering applications

(e.g., mapping, area coverage, search and rescue), we require
the swarm to fly in a specific direction. To this aim, we allow
the selection between the consensus on velocity in Olfati-
Saber’s algorithm, or the velocity alignment in Vasarhelyi’s
algorithm and a so-called migration term that penalizes
deviations from a given velocity.

In decentralized approaches, one agent’s movement is only
influenced by local information coming from its neighbors.
Neighbors selection can be operated according to different
metrics. Two widely adopted ones are the euclidean and
the topological distances [29], [30]. The euclidean distance
defines Ni as the set of agents j 6= i within a constant
radius of influence r from agent i. The cardinality of this set
depends on the density of the swarm. Instead, the topological
distance defines Ni as the number nn of nearest agents to i,
as illustrated in Fig. 4. In the latter case, the cardinality does
not depend on the density. In our software, both distances
are implemented, and they can be set before starting the
simulation.

For the navigation in cluttered environments, we provide
a map that generates cylindrical obstacles with parametric
size and density (see Fig. 5). In both Olfati-Saber’s and
Vasarhelyi’s algorithms, the obstacle avoidance behavior is
modeled via virtual agents. These are additional agents to
which we assign a position and velocity that depend on the
obstacles configuration, and they act on drones as if they
were normal agents.

SwarmLab offers two modalities for swarm simulation:
the high-fidelity mode simulates quadcopter drones, where

8008



Fig. 5. Maps with varying obstacle density. Cylindrical obstacles are
distributed on the map to reproduce a forest-like environment. The obstacle
density increases from left to right. Thanks to the obstacle avoidance
behavior, the swarm agents are able to avoid collisions with the environment.

realistic dynamics and control are implemented, while the
second approximates the drone dynamics with the dynamics
of a point mass, whose state is defined by inertial position
and velocity. This is meant to trade-off simulation fidelity
and computational efficiency (see Sec. V for more details).

D. Graphical User Interfaces (GUIs)

For introducing the user to the simulator functionalities
we provide two GUIs: one for selecting the parameters
related to single drones simulations and one for aerial swarms
simulations. The latter is split into sections that allow the user
to select the drone dynamics, either quadcopter or point-
mass, the main swarm parameters such as the number of
drones, the preferred value of the inter-agent distance, the
speed and orientation of the swarm motion, and simulation
parameters such as the simulation time duration, the presence
of debugging plots and the creation of a map with obstacles.

E. Plotting tools

One of the most critical parts of programming is verifying
the validity of the code and algorithms. To this aim, a
user needs tools to analyze the state of the system and
find the origin of potential faults. SwarmLab allows the
tracking of: (i) inter-agent distance and distance to obstacles,
in order to detect collisions, (ii) swarm speed, useful for
instance to monitor slow-down effects in front of obstacles,
(iii) acceleration, to observe its variability and, hence, the
efficiency of the algorithm. State plotting is possible both
during the simulation, run-time, and at the end, offline. Run-
time is useful for debugging, while offline is practical when
the user does not want to slow down the simulation with the
addition of graphic features. Single-drone plotting can be
used simultaneously to observe the state of a specific drone
in the swarm.

F. Performance analysis

The presence of obstacles in the environment can threaten
the ability of the agents to remain cohesive during their
mission and prevent them from flying smoothly in the migra-
tion direction. In these situations, the swarm may split into
multiple subgroups with no influence on one another, and
collisions may occur. To evaluate the collective navigation

performance during flight, we use five metrics adopted in
previous work [31]. These metrics were inspired by robotic
and biological studies of aerial swarms:
• the order metric, Φo: it captures the correlation of the

agents’ movements and gives an indication about how
ordered the flock is. We express it by

Φo =
1

N(N − 1)

∑
i,j 6=i

vi · vj

‖vi‖‖vj‖
.

• The safety metrics, Φs,ag and Φs,obs: they respectively
measure the risk of collisions among the swarm agents
or between agents and obstacles. We denote with rag
the collision radius of an agent. Instead, robs denotes
the obstacle radius. The number of inter-agent collisions
is nag = |{(i, j) s.t. j 6= i ∧ dij < 2rag}|, while the
number of collisions with obstacles is nobs = |{(i,m) ∧
dim < rag+robs}|. Therefore, the inter-agent safety and
the safety with obstacles can be expressed as

Φs,ag = 1− nag
N(N − 1)

, Φs,obs = 1− nobs
N

.

• The union metric, Φu: it counts the number of indepen-
dent subgroups that originates during the simulation.
We define nc as the number of connected components
of the undirected graph that corresponds to the flock
topology, then it holds

Φu = 1− nc − 1

N − 1
.

• The connectivity metric, Φc: it is defined from the alge-
braic connectivity of the sensing graph that underlines
the considered swarm configuration as

Φc =
λ2
N

where λ2 is defined above. Notice that Φc 6= 0 only
when Φu = 1. In this sense, the connectivity metric is
complementary to the union metric.

IV. COMPARISON OF SWARM ALGORITHMS AND
COMPUTATIONAL TIME ANALYSIS

In this section, we present the results of the comparison of
two swarm algorithms enabled by SwarmLab. Moreover, we
present an analysis of the computational time of the simulator
in different modes.

To compare swarm algorithms, we present a use case
where 25 agents fly in a cluttered environment. We select
point-mass dynamics, and we perform the neighbor selection
with nn = 10 and r = 150. The agents’ initial positions are
randomly selected in a cubic volume, and the swarm is let
navigate over 100s in the direction of increasing values of
the x position. Both swarm algorithms described in Sec. III-B
are tested and the graphical outputs are reported in Fig. 6. We
notice that Olfati-Saber’s algorithm prioritizes the tracking of
the speed reference value (see Fig. 6c), while Vasarhelyi’s
one allows the agent to slow down in front of obstacles to
better match the reference inter-agent distance (see Fig. 6b).
The minimum distance threshold in Fig. 6b is never crossed
with both algorithms, which means that no inter-agent col-
lisions occur. By examining the trajectories, in Fig. 6a and

8009



Fig. 6. Comparison of two swarm algorithms. Olfati-Saber’s plots are in red, while Vasarhelyi’s plots are in blue. The simulation time is 100s for
both algorithms. In (a) we observe the top view of the trajectories of 25 agents, flying in an obstacle field from lower to higher values of the x position. In
(b) and (c) inter-agent distances and speeds are compared, in terms of average, minimum, and maximum values. The reference values are in dashed lines,
while the collision threshold, the radius of influence r, and the maximum speed are in dashdotted lines. Two of the presented performance metrics are
compared in (d), the order (Φo) and the connectivity (Φc). Finally, (e) shows the zoom in of the trajectories of the agents around obstacles, from above.

Fig. 6e, we see that the obstacle avoidance behavior of the
second algorithm allows a smoother interaction of the agents
with obstacles and reduces their oscillations, while in the first
case, both in the trajectories and speed we observe prominent
oscillations. Concerning the order Φo, better performance is
obtained with Vasarhelyi’s algorithm (see Fig. 6d). Indeed,
oscillations around obstacles prevent ordered flight in the
case of Olfati-Saber’s swarming. On the contrary, at the
end of the simulation, Olfati-Saber’s swarm order is higher.
Indeed, once that the agents quit the obstacle field, in the
free space, their velocity converges to the migration one.
Contrarily, while the agents fly among obstacles, connectivity
Φc is slightly better in Olfati-Saber’s case, and vice versa in
the free space. Being connectivity related to the speed of the
information flow among the agents, good values are preferred
in scenarios where information-sharing among the agents is
crucial (e.g., cooperative localization).

To evaluate the computational time, we run the two swarm
algorithms with up to 1024 agents without any graphical
output. The simulation time is arbitrarily set to 20 seconds.
The hardware used is a DELL Precision Tower with a
3.6 GHz Intel Core i7-7700 processor and 16 GB 2400
MHz RAM. The results are reported in Fig. 7, where the
computational time is expressed in terms of real-time factor.
A real-time factor equal to one means that the computational
time required by the computer to run the simulation is equal

to the simulation time. Instead, a value equal to two indicates
that the computational time is twice the simulation time.
The trend we notice is the same for both swarm algorithms
and both drone typologies. As expected, when modelling the
drones as point-masses the real-time factor is significantly
lower. For instance, when we consider a swarm of 64 agents
the real-time factor is close to 0.5 for the Vasarhelyi’s
algorithm and 0.9 for the Olfati-Saber’s algorithm. Instead,
when a full nonlinear quadcopter dynamics is used with the
same amount of agents, the real-time factor increases up to
4.6 for the Vasarhelyi’s algorithm and 5.2 for the Olfati-
Saber’s one.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a versatile and scalable drone
swarm simulator entirely written in MATLAB that integrates
built-in functionalities for collective navigation, debugging
of the algorithms, and performance analysis. We believe
that this framework can serve as a development tool and a
comparative platform for the growing research community in
aerial swarms, and for education. With reduced coding effort,
the user can change parameters, edit their code, run and test it
in a single scripted programming language. Regarding future
work, we will focus on the improvement of the computational
time to allow faster simulation of large swarms. For this,
we will consider automatic C/C++ code generation from

8010



Fig. 7. Real-time factor for varying sizes of the swarm. The number of
drones goes from 2 to 1024. Two swarm algorithms (Vasarhelyi’s and Olfati-
Saber’s) and two dynamics (point-mass and quadcopter) are compared.

MATLAB. Moreover, noise modeling and delays should be
considered to narrow the gap between simulation and reality.
Finally, another challenge for future works is the integration
of automatic parameter tuning for the swarm algorithms as
done in [24]. This will allow to optimize the swarming
behavior for a given environment or task with respect to
the implemented performance metrics.

ACKNOWLEDGMENTS

We thank Andrea Giordano, Victor Delafontaine, Fabian
Schilling, and Anthony De Bortoli for their valuable con-
tribution. This work was supported by the Swiss National
Science Foundation with grant number 200020 188457 and
the European project RoboCom++.

REFERENCES

[1] D. Floreano and R. J. Wood, “Science, technology and the future of
small autonomous drones,” Nature, vol. 521, no. 7553, pp. 460–466.

[2] F. Schilling, J. Lecoeur, F. Schiano, and D. Floreano, “Learning
vision-based flight in drone swarms by imitation,” IEEE Robotics and
Automation Letters, vol. 4, no. 4, pp. 4523–4530, 2019.

[3] M. Bernard, K. Kondak, I. Maza, and A. Ollero, “Autonomous
transportation and deployment with aerial robots for search and rescue
missions,” vol. 28, no. 6, pp. 914–931, 2011.

[4] J. Zhang, J. Hu, J. Lian, Z. Fan, X. Ouyang, and W. Ye, “Seeing the
forest from drones: Testing the potential of lightweight drones as a
tool for long-term forest monitoring,” vol. 198, pp. 60–69, 2016.

[5] A. T. Erman, L. van Hoesel, P. Havinga, and J. Wu, “Enabling mobility
in heterogeneous wireless sensor networks cooperating with uavs for
mission-critical management,” vol. 15, no. 6, pp. 38–46, 2008.

[6] T. Stirling, J. Roberts, J.-C. Zufferey, and D. Floreano, “Indoor
navigation with a swarm of flying robots,” in 2012 IEEE International
Conference on Robotics and Automation. IEEE, 2012, pp. 4641–4647.

[7] K. N. McGuire, C. D. Wagter, K. Tuyls, H. J. Kappen, and G. C.
H. E. de Croon, “Minimal navigation solution for a swarm of tiny
flying robots to explore an unknown environment,” Science Robotics,
vol. 4, no. 35, p. eaaw9710, 2019.

[8] D. Mellinger, M. Shomin, N. Michael, and V. Kumar, “Cooperative
grasping and transport using multiple quadrotors,” in Distributed
autonomous robotic systems, 2013, pp. 545–558.

[9] P. S. Andrews, S. Stepney, and J. Timmis, “Simulation as a scientific
instrument,” in Proceedings of the 2012 workshop on complex systems
modelling and simulation, Orleans, France, 2012.

[10] B. Huang, C. Yu, and B. D. O. Anderson, “Understanding Error Prop-
agation in Multihop Sensor Network Localization,” vol. 60, no. 12,
pp. 5811–5819, 2013.

[11] J. Meyer, A. Sendobry, S. Kohlbrecher, U. Klingauf, and O. von
Stryk, “Comprehensive simulation of quadrotor uavs using ros and
gazebo,” in 3rd Int. Conf. on Simulation, Modeling and Programming
for Autonomous Robots (SIMPAR), 2012.

[12] O. Michel, “Cyberbotics ltd. webotsTM: professional mobile robot sim-
ulation,” International Journal of Advanced Robotic Systems, vol. 1,
no. 1, 2004.

[13] E. Rohmer, S. P. N. Singh, and M. Freese, “V-REP: A versatile and
scalable robot simulation framework,” in 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2013, pp. 1321–1326.

[14] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “AirSim: High-Fidelity
Visual and Physical Simulation for Autonomous Vehicles,” in Field
and Service Robotics. Springer International Publishing, 2018, pp.
621–635.

[15] L. Pitonakova, M. Giuliani, A. Pipe, and A. Winfield, Feature and
Performance Comparison of the V-REP , Gazebo and ARGoS Robot
Simulators. Springer International Publishing, 2018.

[16] A. Staranowicz and G. L. Mariottini, “A survey and comparison of
commercial and open-source robotic simulator software,” in Proceed-
ings of the 4th International Conference on PErvasive Technologies
Related to Assistive Environments, 2011.

[17] M. S. P. de Melo, J. G. da Silva Neto, P. J. L. da Silva, J. M.
X. N. Teixeira, and V. Teichrieb, “Analysis and comparison of robotics
3d simulators,” in 2019 21st Symposium on Virtual and Augmented
Reality (SVR). IEEE, 2019, pp. 242–251.

[18] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.
No.04CH37566), vol. 3. IEEE, 2004, pp. 2149–2154.

[19] C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Bram-
billa, N. Mathews, E. Ferrante, G. Di Caro, F. Ducatelle, M. Birattari,
L. M. Gambardella, and M. Dorigo, “ARGoS: A modular, parallel,
multi-engine simulator for multi-robot systems,” Swarm Intelligence,
vol. 6, no. 4, pp. 271–295, 2012.

[20] L. Meier, D. Honegger, and M. Pollefeys, “PX4: A node-based
multithreaded open source robotics framework for deeply embedded
platforms,” in 2015 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2015, pp. 6235–6240.

[21] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, Robot Operating
System (ROS): The Complete Reference (Volume 1). Cham: Springer
International Publishing, 2016, ch. RotorS—A Modular Gazebo MAV
Simulator Framework, pp. 595–625.

[22] C. McCord, J. P. Queralta, T. N. Gia, and T. Westerlund, “Distributed
progressive formation control for multi-agent systems: 2d and 3d
deployment of uavs in ros/gazebo with rotors,” in 2019 European
Conference on Mobile Robots (ECMR). IEEE, 2019.

[23] R. W. Beard and T. W. McLain, Small Unmanned Aircraft: Theory
and Practice. Princeton University Press, oCLC: ocn724663112.

[24] G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A. E. Eiben, and
T. Vicsek, “Optimized flocking of autonomous drones in confined
environments,” Science Robotics, vol. 3, no. 20, 2018.

[25] F. D’Urso, C. Santoro, and F. F. Santoro, “An integrated framework
for the realistic simulation of multi-UAV applications,” vol. 74, pp.
196–209.

[26] M. Fiedler, “Laplacian of graphs and algebraic connectivity,” Banach
Center Publications, vol. 25, no. 1, pp. 57–70, 1989.

[27] S. Bouabdallah and R. Siegwart, “Full control of a quadrotor,” in 2007
IEEE/RSJ International Conference on Intelligent Robots and Systems.
Ieee, 2007, pp. 153–158.

[28] R. Olfati-Saber, “Flocking for Multi-Agent Dynamic Systems: Algo-
rithms and Theory,” IEEE Transactions on Automatic Control, vol. 51,
no. 3, pp. 401–420, 2006.

[29] A. Strandburg-Peshkin, C. R. Twomey, N. W. F. Bode, A. B. Kao,
Y. Katz, C. C. Ioannou, S. B. Rosenthal, C. J. Torney, H. S. Wu,
S. A. Levin, and I. D. Couzin, “Visual sensory networks and effective
information transfer in animal groups,” Current Biology, vol. 23,
no. 17, pp. R709–R711, 00144.

[30] M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani,
I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale,
and V. Zdravkovic, “Interaction ruling animal collective behavior
depends on topological rather than metric distance: Evidence from
a field study,” Proceedings of the National Academy of Sciences, vol.
105, no. 4, pp. 1232–1237, 2008.

[31] E. Soria, F. Schiano, and D. Floreano, “The influence of limited visual
sensing on the Reynolds flocking algorithm,” IEEE Third International
Conference on Robotic Computing (IRC), 2019.

8011


