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Abstract— Most path planning algorithms for covering a
complex 3D object ignore physical limitations or constraints
on a robot’s motion. Adhering to such constraints for a given
path can slow down the time to cover the path because the
motion may need to be adjusted. This work considers a scenario
in computer numerical control (CNC) milling applications,
where the robot is a cutting tool that needs to cover the
surface of a complex 3D object under the following constraint:
for every point on the generated path, the robot must be
assigned an accessible orientation to avoid collisions between
it and other parts of the object. Our proposed approach,
which we call max orientation coverage, employs a two-step
optimization scheme. It can improve path efficiency with respect
to both the length of the path and the cost of dealing with
the collision-avoiding constraints. We evaluate our approach
through extensive simulation studies on four CAD benchmarks
against a state-of-the-art baseline. We show that our proposed
approach can improve the efficiency of the path by 29.7% on
average compared with the baseline and the improvement goes
up to 46.5% for certain complex objects.

I. INTRODUCTION

Coverage path planning has many applications, including
robotic vacuum cleaners, aerial robotic inspection [2], [4],
3D printing [30], [31], [32], and autonomous underwater
vehicles (AUV) [25], among others. To facilitate autonomous
path planning for complex environments or objects, a robot
must be equipped with algorithms capable of computing
efficient paths that achieve full coverage while respecting
any limitations or constraints on the robot’s motion.

We are specifically motivated by problems in computer
numerical control (CNC) milling, and Figure 1 gives an
example from that domain. The problem is to cover the
object (e.g., the head) where the “robot” is a milling tool
composed of multiple cylinders. The constraint is that the
robot (tool) and the object ought not collide except at the
pivot point, which is where the end of the tool touches
the surface. Any other collision would be detrimental to
the milling process, damaging the robot or the target. Each
pivot point has an accessibility map (AM) constructed to
determine which tool orientations are inaccessible (e.g., the
top right side of Figure 1 is the AM and the bottom right
is the corresponding orientation). When generating a valid
path, the algorithm has to ensure that no collision exists by
selecting only accessible orientations at all points.
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Fig. 1: An example of AM shows two orientations: accessible
orientation (on the left) and inaccessible orientation (on the
right), corresponding to the white point and the black point
in the top AM respectively. An AM at (r ∗ c)-resolution
is discretized uniformly into r ∗ c points, with each point
denoting a (θ, ϕ) orientation in a spherical coordinate system.

Conventional path planning methods either assume that the
robot is under no constraint or focus on the optimization of
the path length, and ignore this type of constraint. To satisfy
the constraint given a fixed path may require conservative
operations; in CNC, for instance, that could be retracting the
tool and resetting its position or orientation, which can be
very expensive in practice. Focusing on the path length only
can underestimate such costs, leading to inefficient paths.

The tool path planning problem differs from conventional
coverage path planning (CPP) as it is specifically designed
for generating collision-free milling paths. Most prior ap-
proaches assume the tool is a single cylinder and only
a small piece of the object surface can cause collisions.
However, in reality a tool is better-modeled geometrically by
multiple cylinders of various sizes, with possible collisions
occurring and anywhere on the object. Checking collisions in
this setting demands massive computational resources, which
is the reason why most tool path planning methods make
simplified assumptions. These approaches are hard to extend
for the more general coverage task we consider.

We propose a novel path planning algorithm, called max
orientation coverage, that constructs an efficient path gen-
erally covering an arbitrary object. We consider both the
cost of path length and the cost of operations handling the
constraints. It has two components.

The first is a segmentation algorithm, which we call max
segmentation (Section IV-A). Prior segmentation algorithms
rely on random sampling to achieve a full coverage. Doing so
is usually unstable and leads to a large number of segments,
resulting in a higher likelihood of redundant coverage. By
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contrast, our segmentation algorithm can obtain a stable
result and reduce the number of segments. Our approach is
to convert the coverage optimization problem into a minimal
vertex cover (MVC) problem.

The other component is a new coverage algorithm based
on orientation (Section IV-B). Most earlier approaches focus
on optimizations of the path length and do not consider
the effects of dealing with the constraints on the robot. By
contrast, our approach does so, trading off small increases in
path length to significantly lower the cost of enforcing the
tool constraints and thus yield better overall paths.

Additionally, we conduct several simulations to help val-
idate and evaluate our approach. In particular, we test it on
four CAD benchmark objects against a previously proposed
random sampling-based coverage algorithm [10], [4], [12],
[25]. We observe that our max orientation coverage improves
the path efficiency by 29.7% on average and the improvement
goes up to 46.5% for one of the more geometrically complex
objects, the dragon (Figure 10).

II. RELATED WORK

Many contributions have been made to address the CPP
problem. We divide them into three types: the approaches of
covering general environments, the approaches of covering
3D objects and the approaches of milling applications.

There are several in-depth and comprehensive surveys on
coverage path planning [17], [3]. Gabriely presents an online
approach that constructs a systematic spiral path with a
spanning tree algorithm [13]. Luo presents an algorithm that
utilizes neural network to generate a real-time path [23]. Acar
applies cellular decomposition considering sensor-based de-
tector [1]. These approaches focus on the path lengths as the
optimization target, while our method concerns an additional
cost of handling the restraints.

For the approaches that cover 3D objects, random
sampling-based coverage algorithms might be regarded state-
of-the-art for handling versatile 3D coverage problems [10],
[12], [4], [5], [2], [25], [26], [16]. They operate using a two-
step optimization. The first step is a segmentation problem to
compute a minimal set of viewpoints using random sampling
to achieve a complete coverage of the target structure. This
step is equivalent to solving a variant of art gallery problem
(AGP), which is NP-hard problem. In the second step, a
minimum cost tour over all the viewpoints is searched to
optimize the tour length. This involves solving a variant of
travel salesman problem (TSP). Although the two problems
are NP-hard, there are fast algorithms that approximately
solve the two problems for AGP [24], [18] and TSP [11],
[27]. Our proposed method follows the structure of the two-
step optimization to reduce the computational cost. Instead
of randomly sampling, our method collects viewpoints by
solving a MVC problem.

The tool path planning problem is another type of problem
that concerns avoiding collisions for an efficient milling pro-
cess [7], [22], [8], [20], [28], [9]. Jun presents a methodology
of optimizing and smoothing the tool orientation control
5-axis sculptured surface machining [22]. Hsueh proposed

Fig. 2: A solution to the CPP problem is one step of
machining one layer in the milling application.

a two-step method for preventing tool collisions in 5-axis
machining [20]. Each step adjusts the tilt angle and the yaw
angle, respectively.

III. BACKGROUND AND PROBLEM STATEMENT

The CPP problem can be used for our CNC milling
application, as explained below. We describe the input to our
problem, the constraint and the problem statement. Lastly, we
define the cost that is our optimization target.

A. Coverage path planning in CNC milling

In CNC milling, the goal is to cut or shape a given input
object (e.g., the stock in Figure 1) into a target (e.g., the
head). We assume that the target object fits within the stock.
The CPP problem is to cover the surface of a 3D object. To
obtain the target object for a milling application, multiple
steps of solving a CPP problem are required.

Figure 2 illustrates one step of covering the surface of
the head for the milling process. The original object is the
object before applying the milling and the target object is the
result after it. The space difference represented by the cut
depth in Figure 2 denotes the materials that are machined
off by the path generated by the CPP problem. Usually the
cut depth equates to the size of the robot. For these steps,
the milling process uses various robot sizes in a decreasing
order. Initially, a large robot size is preferred to get a coarse
shape. Finally, a small robot size is used to obtain a high-
quality surface.

The surface of the object is represented by a dense mesh
as shown in the right bottom of Figure 2. Traversing all
vertices in the mesh can achieve the coverage of the object
surface. To ensure a safe movement from one vertex to
another, each vertex has a corresponding AM, indicating that
only accessible orientation can be specified. Note that at a
vertex, we only allow the movement to its neighboring vertex
following the AM. This paper studies the CPP problem as a
single step that covers an arbitrary object.

B. Accessibility maps as inputs to our problem

An AM is given as an input, since our focus is on how to
construct an efficient collision-free path. (Efficiently generat-
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Fig. 3: The input of our problem is the N points on the
surface of the target 3D object and the corresponding N AM.
The output is a 5-axis (x, y, z, θ, ϕ) path, where (x, y, z)
is the pivot point on the end of the robot and (θ, ϕ) is an
orientation the robot is placed.

ing AMs is addressed in our prior work [6].) As a preliminary
task, the AM of all discretized points on the surface of
the object are calculated. The optimization task is how to
specify an orientation for each point to construct a valid
path. Calculating an accurate AM for each point is expensive
because the object itself changes during milling. Instead,
we calculate the AM of all points only once in a parallel
way at beginning of each step of the CPP problem. This
approach means our collision-avoidance is conservative: if an
orientation has no collision with the original object, we can
guarantee that the orientation is safe with the current object
undergoing the milling process, because it is a shrunken
version of the original.

C. Constraint of avoiding collisions

This paper targets at the optimization of the cost of dealing
with the constraint that the path has to be collision-free,
where the robot cannot smoothly move from one point to
another without considering its orientation. Even if speci-
fying an accessible orientation, we cannot assume that the
orientation can be changed abruptly. Instead, there is a time-
cost when changing an orientation to another. Note that we
do not concern any joint limits or other kinematic constraints.
The purpose of constraint-handling in our particular problem
is to have smooth, continuous movement from one point to
another. Three possible situations may occur when moving
from one point to another.

• 1) Given that the current orientation is accessible at the
next point, we directly conduct the movement without
worrying about the orientation.

• 2) Given that the current orientation becomes inaccessi-
ble at the next point but there exists another accessible
orientation on both the next and the current point, we
demand a reorientation, which is a process that reorients
the robot to another accessible orientation and then
moves. An example appears in the bottom right of
Figure 3.

Fig. 4: Candidate ways to solve the 3D path planning
problem. Our proposed methods are highlighted in blue color.

• 3) Given that the current orientation becomes inac-
cessible at the next point and there is no accessible
orientation shared between the two points, we demand
a retraction, which is a process that pulls back the
robot to a place far away from the object, reorients
to an accessible orientation, and resumes, shown in the
bottom left of Figure 3. The point needs to stay far away
from the object so that any orientation is collision-free.
This operation has three steps for a smooth transition:
pull back, reorient, and then push in.

D. Problem statement

Our problem is to construct an efficient path for a robot
that completely covers (physically touches) all points on the
surface of a given 3D object (e.g., the head of Figure 1) and
guarantee no collisions. The robot is a 5-axis CNC milling
tool. Figure 3 shows the input and the output. The focus
of this paper is on formulating and solving the optimization
problem.

E. Define the cost function

We define the cost as the machining time, so that an
efficient path is one that covers an object quickly. The
machining time is assumed to be proportional to the path
length. The time of applying the two operations varies
significantly, which depends on specifics of the robot, such
as how to move and how to reorient. We specify a range
as shown in Section V for their cost by normalizing it
with the path length. For example, if the cost parameters
(c1, c2) are (10, 50)mm, it means that each reorientation
consumes the time of the robot moving 10mm and each
retraction consumes the time of the robot moving 50mm.
In the equation below, num1,num2 denote the number of
reorientation and the number of retraction respectively. α
is a constant (second/mm) determined by the milling robot.
Therefore, the optimization goal is to minimize the cost to
achieve a fast coverage.

Mach Time = α ∗ [Path Len + Cost(constraints)]

= α ∗ (Path Len + c1 ∗ num1 + c2 ∗ num2)

With the problem defined, Figure 4 outlines candidate
solution methods. Most approaches have two stages: running
a segmentation algorithm and a coverage algorithm. For
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Fig. 5: Construct a graph N ∗N matrix embedding all candidate covering sets to cover all N points on the surface of the
3D object, where M orientations correspond to the r ∗ c orientation points in AM.

the segmentation algorithm, the K-guard sampling method
randomly samples K guards and chooses the one that covers
the most points [10]. Iterative sampling chooses points that
shorten the path in an iterative way [4]. Greedy sampling
finds the points that cover the most points until all points
are covered [25]. For the coverage algorithm, Lin-Kernighan
heuristic (LKH) TSP constructs a tour covering all the
point for the purpose of the path length reduction [10],
[4], [12], [5], [25]. Three-dimensional cellular decomposition
intersects a slice plane with the object surface to form a loop
around the target object and then traces the loop to the next
slice plane, until a full coverage is done [14], [15].

IV. PROPOSED APPROACH

Our approach has two components: max segmentation
used to reduce the number of segmentation and orientation
coverage used to lower the cost of the retraction and the
reorientation by sacrificing the path length.

A. Max segmentation

Motivated by the high cost of the two operations, our
segmentation algorithm aims to minimize the total number
of viewpoints. We define a set as a series of connected points
that can be covered by a single orientation. An orientation on
a point is associated with a set, where the robot can cover
all the points in this set under this orientation. Our max
segmentation algorithm divides all points into sets.

In the process of choosing the sets, we apply the MVC
algorithm [19] to reduce the number of sets while achieving
a complete coverage, instead of sampling the point or sam-
pling the orientation. Figure 5 illustrates how to construct a
graph matrix, where the vertices are the N points and the
edges represent the candidate sets. Firstly, a function called
“Mark connect” is used to calculate all candidate sets. Given
an orientation, all the points and AM, it has two steps: mark
the accessible points under the specified orientation and form
a set if the points are connected as neighbors. The outputs are
the candidate sets as shown in the middle of Figure 5. Each
orientation has a series of sets that can be covered under the
orientation, and each point has a series of sets that can cover
the point. Lastly, a graph matrix is created, where we let the
points in the candidate sets all-connected. Note that each set
has a single orientation that covers the points within the set.

Fig. 6: Our max segmentation approach to choose a small
number of covering sets to achieve a complete coverage.

Fig. 7: Steps of in-cell coverage and cell-to-cell movement.

Figure 6 shows the steps of our max segmentation algo-
rithm. The first step is to apply ReduMIS algorithm [19]
on the graph matrix to choose S points with a complete
coverage. Note that each point is associated with multiple
sets. We are sure that the S points’ L candidates sets can
achieve a complete coverage. The next is to do a greedy
coverage that at every iteration, a set that covers the most
points is chosen from the L sets until all points are covered.

Compared with the random sampling segmentation algo-
rithms, the benefits of our max segmentation come from two
points: S is much smaller than N and L is much smaller than
the total number of the candidate sets. Note that if the robot
does not need to set the orientation in some applications, the
step of doing the greedy coverage can be removed.

B. Orientation-based coverage

With the covering sets generated from the segmentation
algorithm, our coverage algorithm needs to construct a path
to cover the points in sets. The algorithm needs to answer
two questions: how to cover the points in sets and how to
move between sets. We create a graph for the cost reduction,
called orientation graph, where each set corresponds to a
vertex. For simplicity, the set is called cell from now on.
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Fig. 8: Calculate the cost of an edge by mapping the edge
to three points. Red points are the intersected points. Pi and
Pj are the mapped two ends of the edge. Pt is middle point
where the robot does reorientation.

To answer the two questions, our coverage algorithm
has two parts respectively: in-cell coverage and cell-to-cell
movement. Figure 7 shows the steps of the two parts. On
the first part, we use LKH TSP to construct a tour to reduce
the path length of covering each cell. To avoid redundant
coverage, each point on the object surface is assigned to one
cell, which might lead to the points disconnected in a cell.
Then the next step is to add points between two neighboring
points in the tour if they are not connected. On the other
part, we create orientation graph and use the cost of an edge
to represent the cost of a movement from one cell to another.
After all the costs of all possible edges are calculated, we
apply LKH TSP to obtain an order of cells.

Figure 8 illustrates how to calculate the cost of an edge by
mapping the edge to three points. We add an edge between
two cells to the orientation graph as a possible movement,
only when the two cells have intersected points. Among all
the intersected points, the one that has the shortest distance
to exit one cell and to enter the other cell is selected as the
middle point between them. The middle point is the place
the robot does the reorientation and move to another cell.

Figure 9 shows a real example of an edge connecting two
cells in the head object. Due to the requirement of avoiding
redundant coverage, each cell has two types of points: the
actual points to cover in the current cell and the points
already assigned to other cells. The middle point is chosen
from the intersection of both types of points while the two
ends points are from the actual points. The cost of the edge
includes two parts: the sum of the two geodesic distances
and the cost of a reorientation.

To further reduce the cost of moving between cells, we
apply Floyd-warshall algorithm to calculate the edge cost
matrix. Different from the normal calculation of the shortest
distance in a graph, when trying to insert a new cell between
two cells, the edge cost needs to add the cost of a path
passing through the new cell. Lastly LKH TSP is employed
to produce an order of cells that has a small cost of moving
between cells.

As the order of the cells is determined, we know which
edges will be used for the coverage. Through the mapping
from the edge to the points, the two end points become the
exit and the entrance points. Combining with the path of
covering each cell, we can form a 5-axis path.

Fig. 9: An actual example of mapping an edge to points in
the head CAD benchmark. All the points are projected to
2D using principal component analysis (PCA). The middle
point and one end happen to be located at one point.

V. SIMULATION STUDIES

The experimental validation of our approach mainly an-
swers the following three questions: (1) how our max seg-
mentation algorithm performs on the number of sets? (2) how
our orientation coverage algorithm behaves on the cost of the
two operations? (3) how our proposed method performs on
the total cost of 5-axis paths?

Implementation of candidate algorithms. We evaluate
the candidate algorithms shown in Figure 4. For the segmen-
tation algorithm, K-guard sampling and greedy sampling are
implemented for comparison. Because the key idea of the
iterative resampling [4] is to reduce the distance among all
sets with no need to cover each point in the sets, it does not
work for our scenario. Thus the iterative resampling is not
presented. In our problem setting, the sampling metric has
two dimensions as shown in the middle part of Figure 5:
the N points and the M orientations. We implemented K-
guard on the orientations and greedy sampling on the points.
K-guard algorithm samples K sets as candidate sets at each
iteration, and then choose the one that covers the most points,
until all points are covered. Greedy algorithm samples a point
from the uncovered points and choose the orientation that
cover the maximal number of points.

For the coverage algorithm, LKH TSP is our baseline.
We also use LKH TSP for the in-cell coverage. The main
comparison is on how to construct a path for the cell-to-
cell movement. Firstly we calculate the mean coordinates of
the points within a cell as the center to represent the cell.
Secondly, LKH TSP is employed to generate a short tour
passing through all the cells as the cell order. Lastly when
combining the in-cell coverage with the cell order, the point
in the next cell that is closest to the exit point in the current
cell is considered as the next entry point.

For our coverage baseline algorithm, we focus on reducing
the path length representing the 3D cellular decomposition
approach [14], [15] as well. Regarding lowering the cost
of the reorientation and retraction, we always choose an
orientation that covers the most points for a given path.

Benchmarks and configurations. We use four CAD
benchmark models for our evaluation as presented in Fig-
ure 10. The AM is generated form SculptPrint, a computer-
aided manufacturing (CAM) application for producing CNC
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Fig. 10: Our four CAD object models from left to right are: Head, Turbine, Candle holder, Dragon.
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Fig. 11: Using various object models to evaluate segmenta-
tion algorithms.

tool paths [21], [6], with a tool composed of 4 cylinders,
with varying radii (0.79, 1.59, 25, 31.5)mm and heights(2.28,
5.08, 78, 22)mm. For the K-guard sampling algorithm, the K
value is ranged from 10 to 40. Both sampling algorithms are
run 20 times and report their mean and their std. Depending
on the specific application and the robot, the reorientation
and retraction cost may vary significantly. Thus we vary the
cost of a reorientation and a retraction by normalizing them
into the path length as a range from (10, 50)mm to (50,
250)mm. For simplicity, “Ret” and “Ort” are short for the
cost of retractions and reorientations. “GreTSP”, “GuaTSP”,
“MaxTSP” and “MaxOrt” are the four candidate algorithms,
representing (greedy sampling + TSP), (K-guard sampling +
TSP), (max segmentation + TSP) and (max segmentation +
orientation coverage).

A. Number of sets in segmentation algorithms

We report the total number of sets (cells) that cover the
surface of the four objects. Figure 11 shows the results. We
can see that the number of cells required for the K-guard
sampling decreases as the K value increases. Comparing the
40-guard sampling with the greedy sampling, they have a
roughly same number of cells on the candle holder object,
but on the turbine object, the greedy sampling behaves even
worse than 10-guard sampling. It is uncertain which one is
better because the random sampling is unstable. Our max
segmentation gains a smaller number of cells on all four
objects. Overall we can reduce the number of cells by 24.5%
and 34.2% on average compared with 40-guard sampling and
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Fig. 12: Segmentation algorithm calculates the number of
sets under various AM resolutions with the dragon object
model.

greedy-sampling respectively.
We increase AM resolutions leading to the growth of the

number of accessible orientations on each point. Figure 12
shows the results on the number of sets and the number
of candidate sets. The number of candidate sets does not
grow exponentially as the AM resolution. This is because
as the number of orientations raises, it is more likely that
multiple orientations correspond to a set as a connected
component. From the resolution 162 to 642, both the K-
guard sampling and the greedy sampling gain an increasing
number of sets, because it becomes less likely that the
algorithm chooses the “correct” set as the total number of
sets grows. On the resolution 1282, the number of cells
does not increase because more “correct” sets are added for
sampling. In contrast, our max segmentation is not negatively
influenced by the AM resolution, but the number of sets
decreases slightly. On average, it reduces the number of sets
by 38.6% and 48.0% than 40-guard sampling and greedy-
sampling respectively.

B. Coverage algorithms

To evaluate how much our orientation coverage can con-
tribute, we fix the max segmentation on the first step, but
compare it again LKH TSP algorithm. Figure 13 shows the
results of the two algorithms. Our orientation coverage does
not have any retractions, because between any two points,
we can find an accessible orientation for the movement.
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Fig. 13: Orientation coverage against LKH TSP with the
dragon object model. On the left side, the cost of reorienta-
tion and retraction is converted into the path length. On the
right side, the two costs are fixed to (30, 150).

Note that we can not guarantee no retraction if the input
is a disconnected graph. Our algorithm has a slight increase,
while the “MaxTSP” algorithm has a sharp rise as the cost
of the two operations increases. On average, our orientation
coverage reduces the total cost by 21.5%.

When varying the AM resolutions, our algorithm always
has a smaller number of reorientation. while “MaxTSP” has
an unstable cost of both operations, because a shorter path
may require a high cost of reorientation and retraction. On
average, our algorithm only increase the path cost by 3.5%,
and achieve a 15.9% cost reduction in total.

C. Cost of 5-axis path

We report the total cost of the 5-axis paths generated by the
four algorithms. “MaxTSP” algorithm gains a cost reduction
of 16.79% and 4.14% on the path length than “GreTSP”
and “GuaTSP”, because our max segmentation obtains a
smaller number of cells, where a larger number of cells leads
to a more-likely redundant coverage. Also because of the
smaller number of cells, “MaxTSP” decreases the cost of
reorientation by 37.8% and 30.4% respectively than the two
sampling algorithms. Compared with “MaxTSP”, our “Max-
Ort” achieves a cost reduction of 67.2% on the cost of the
two operations. Figure 15 and Figure 16 present the 5-axis
path generated by “GreTSP” and our “MaxOrt” algorithms.
For the dragon object, “MaxOrt” performs 38.9% better. The
improvement goes up to 46.6% if the two costs are (50,
250)mm. Overall, the path generated by our “MaxOrt” is
29.7% more efficient than “GreTSP” on average.

VI. CONCLUSION AND FUTURE WORK

Focusing on how to avoid collisions when constructing an
efficient path for a coverage, our proposed max orientation
coverage has two key ideas: a segmentation algorithm called
max segmentation Section IV-A and a coverage algorithm
called orientation coverage Section IV-B. Our experimental
results on 4 CAD benchmarks demonstrate that our method
can generate an efficient 5-axis path on both the cost of the
path length and the cost of avoiding collisions, and it can
improve the path efficiency by up to 46.6% Compared with
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Fig. 14: 5-axis path cost of the four candidate algorithms on
the four objects. The cost of a reorientation and a retraction
is fixed to (30, 150)mm in path length.

a state-of-the-art baseline. For future work, we plan to extend
our method to online algorithms that require producing fast
and efficient paths, because our current work only targets on
offline applications that allow several minutes of execution
time. We will explore the value of incorporating more special
operations, such as considering how to enter and exit a cell
and the effects of speed-up and slow-down.
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